• Title/Summary/Keyword: biomimetic materials

Search Result 80, Processing Time 0.03 seconds

Nano Convergence Systems for Smart Living

  • Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.55-55
    • /
    • 2015
  • Today, engineers are facing new set of challenges that are quite different from the conventional ones. Information technologies are rapidly commoditizing while the paths beyond the current roadmaps became uncertain as various technologies have been pushed to their limits. Along with these changes in IT ecosystems, grand challenges such as global security, health, sustainability, and energy increasingly require trans-disciplinary solutions that go beyond the traditional arenas in STEM (Science, Technology, Engineering and Mathematics). Addressing these needs is shifting engineering education and research to a new paradigm where the emphasis is placed on the consilience for holistic and system level understanding and the convergence of technology with AHSD (arts, humanities, social science, and design). At the center of this evolutionary convergence, nanotechnologies are enabling novel functionalities such as bio-compatibility, flexibility, low power, and sustainability while on a mission to meet scalability and low cost for smart electronics, u-health, sensing networks, and self-sustainable energy systems. This talk introduces the efforts of convergence based on the emerging nano technology tool sets in the newly launched School of Integrated Technology and the Yonsei Institute of Convergence Technology at Yonsei International Campus. While the conventional devices have largely depended upon the inherent material properties, the newer devices are enabled by nanoscale dimensions and structures in increasingly standardized and scalable fabrication platform. Localized surface plasmon resonance in 0 dimensional nano particles and structures leads to subwavelength confinement and enhanced near-field interactions enabling novel field of metal photonics for sensing and integrated photonic applications [1,2]. Unique properties offered by 1 dimensional nanowires and 2 dimensional materials and structures can enable novel electronic, photonic, nano-bio, and biomimetic applications [3-5]. These novel functionalities offered by the emerging nanotechnologies are continuously finding pathways to be part of smart systems to improve the overall quality of life.

  • PDF

Biomimetic sequestration of $CO_2$ and reformation to $CaCO_3$ using bovine carbonic anhydrase immobilized on SBA-15 (생체모방공학을 이용한 bovine carbonic anhydrase를 SBA-15에 고정화하여 이산화탄소분리와 재구성된 $CaCO_3$ 연구)

  • Vinoba, Mari;Kim, Dae-Hoon;Lim, Kyoung-Soo;Jeong, Soon-Kwan;Alagar, Muthukaruppan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.495-499
    • /
    • 2010
  • The biocatalytic capture of $CO_2$, and its precipitationas $CaCO_3$, over bovine carbonic anhydrase (BCA) immobilized on a pore-expanded SBA-15 support was investigated. SBA-15 was synthesized using TMB as a pore expander, and the resulting porous silica was characterized by XRD, BET, IR, and FE-SEM analysis. BCA was immobilized on SBA-15 through various approaches, including covalent attachment (BCA-CA), adsorption (BCA-ADS), and cross-linked enzyme aggregation (BCA-CLEA). The immobilization of BCA on SBA-15 was confirmed by the presence of zinc metal in the EDXS analysis. The effects of pH, temperature, storage stability, and reusability on the biocatalytic performance of BCA were characterized by examining para-nitrophenyl acetate (p-NPA) hydrolysis. The $K_{cat}/K_m$ values for p-NPA hydrolysis were 740.05, 660.62, and $680.11M^{-1}s^{-1}$, respectively, where as $K_{cat}/K_m$ for free BCA was $873.76M^{-1}s^{-1}$. The amount of $CaCO_3$ precipitate was measured quantitatively using anion-selective electrode and was found to be 12.41, 11.82, or 11.28 mg $CaCO_3$/mg for BCA-CLEA, BCA-ADS, or BCA-CA, respectively. The present results indicate that the immobilized BCA-CLEA, BCA-ADS, and BCA-CA are green materials, and are tunable, reusable, and promising biocatalysts for $CO_2$ sequestration.

  • PDF

Miniature Jumping Robot Using SMA Coil Actuators and Composite Materials (형상기억합금 코일 구동기와 복합재를 이용한 소형 도약 로봇 설계 및 제작)

  • Jung, Sun-Pill;Koh, Je-Sung;Jung, Gwang-Pil;Cho, Kyu-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.136-142
    • /
    • 2013
  • In nature, many small insects are using jumping as a survival strategy. Among them, fleas jump in a unique method. They use an elastomer, 'Resilin', an extensor muscle and a trigger muscle. By contracting the extensor muscle, the elastic energy, that makes a flea to jump, is stored in the resilin. After storing energy, the trigger muscle begins contracting and pulling the extensor muscle. When the extensor muscle crosses the rotational joint, direction of torque generated from the extensor muscle reverses, 'torque reversal mechanism'. Simultaneously, the elastic energy stored in the resilin releases rapidly and is converted into the kinetic energy. It makes a flea to jump 150 times its body length. In this paper, miniaturized jumping robot using flea-inspired catapult mechanism is presented. This mechanism is based on the 4-bar linkage and the reversal joint and is actuated by Shape Memory Alloy (SMA) coiled springs describing the flea's muscle. The robot prototype is fabricated by SCM process using glass fiber prepregs and a sheet of polyimide film. The prototype is 20mm link length, 34mm width and 2.0g weight and can jump 103cm.

The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration

  • Lee, So-Hyoun;Lim, Youn-Mook;Jeong, Sung In;An, Sung-Jun;Kang, Seong-Soo;Jeong, Chang-Mo;Huh, Jung-Bo
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.484-495
    • /
    • 2015
  • PURPOSE. This study was to evaluate the effects of bacterial cellulose (BC) membranes as a barrier membrane on guided bone regeneration (GBR) in comparison with those of the resorbable collagen membranes. MATERIALS AND METHODS. BC membranes were fabricated using biomimetic technology. Surface properties were analyzed, Mechanical properties were measured, in vitro cell proliferation test were performed with NIH3T3 cells and in vivo study were performed with rat calvarial defect and histomorphometric analysis was done. The Mann-Whitney U test and the Wilcoxon signed rank test was used (${\alpha}<.05$). RESULTS. BC membrane showed significantly higher mechanical properties such as wet tensile strength than collagen membrane and represented a three-dimensional multilayered structure cross-linked by nano-fibers with 60 % porosity. In vitro study, cell adhesion and proliferation were observed on BC membrane. However, morphology of the cells was found to be less differentiated, and the cell proliferation rate was lower than those of the cells on collagen membrane. In vivo study, the grafted BC membrane did not induce inflammatory response, and maintained adequate space for bone regeneration. An amount of new bone formation in defect region loaded with BC membrane was significantly similar to that of collagen membrane application. CONCLUSION. BC membrane has potential to be used as a barrier membrane, and efficacy of the membrane on GBR is comparable to that of collagen membrane.

Molecular Dynamics Study to Investigate Ion Selectivity of Functionalized Carbon Nanotube Membranes (기능화된 탄소나노튜브 멤브레인의 이온 선택성에 관한 분자동역학 연구)

  • Suk, Myung Eun
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.388-394
    • /
    • 2018
  • Carbon nanotube (CNT) based membranes are promising candidates for separation membranes by showing high water transport rate and ion rejection rate according to their radii. The ion selectivity is an important factor to discover the full potential of CNT membranes, and it is affected by the functionalization of CNTs. With multivalent/size ion mixtures, the ion selectivity is affected by not only ion-functional groups interaction but also ion-ion interactions and ion size exclusion in a complex manner. In this study, molecular dynamics simulations are performed to study the ion selectivity of functionalized carbon nanotubes when multivalent/size ions are contained. The permeation energy barriers are calculated by plotting potential of mean force profiles, and various factors, such as CNT size and partial charges, affecting ion selectivity are investigated. The results presented here will be useful for designing CNT membranes for ion separation, biomimetic ion channels, etc.

Development of bio-inspired hierarchically-structured skin-adhesive electronic patch for bio-signal monitoring (생체정보 진단을 위한 생체모사 계층구조 기반 피부 고점착 전자 패치 개발)

  • Kim, Da Wan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.749-754
    • /
    • 2022
  • High adhesion and water resistance of the skin surface are required for wearable and skin-attachable electronic patches in various medical applications. In this study, we report a stretchable electronic patch that mimics the drainable structure pattern of the hexagonal channels of frog's pads and the sucker of an octopus based on carbon-based conductive polymer composite materials. The hexagonal channel structure that mimics the pads of frogs drains water and improves adhesion through crack arresting effect, and the suction structure that mimics an octopus sucker shows high adhesion on wet surfaces. In addition, the high-adhesive electronic patch has excellent adhesion to various surfaces such as silicone wafer (max. 4.06 N/cm2) and skin replica surface (max. 1.84 N/cm2) in dry and wet conditions. The high skin-adhesive electronic patch made of a polymer composite material based on a polymer matrix and carbon particles can reliably detect electrocardiogram (ECG) in dry and humid environments. The proposed electronic patch presents potential applications for wearable and skin-attachable electronic devices for detecting various biosignals.

Epigallocatechin-3-gallate prior to composite resin in abfraction lesions: a split-mouth randomized clinical trial

  • Luisa Valente Gotardo Lara Alves;Lisiane Martins Fracasso;Thiago Vinicius Cortez;Aline Evangelista Souza-Gabriel;Silmara Aparecida Milori Corona
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.13.1-13.11
    • /
    • 2023
  • Objectives: Natural extracts have been investigated as a biomimetic strategy to mechanically strengthen the collagen network and control the biodegradation of extracellular matrix. This study evaluated the effect of epigallocatechin-3-gallate (EGCG) on abfraction lesions prior to the composite resin. Materials and Methods: The sample consisted of 30 patients (aged between 28 and 60 years) with abfraction lesions located in 2 homologous premolars. The teeth were randomly assigned according to dentin treatment: 0.02% EGCG solution or distilled water (control). After enamel acid etching, the solutions were applied immediately for 1 minute. The teeth were restored with Universal Adhesive (3M) and Filtek Z350 XT (3M). Analyzes were done by 2 independent examiners using modified USPHS (retention, secondary caries, marginal adaptation, and postoperative sensitivity) and photographic (color, marginal pigmentation, and anatomical form) criteria at baseline (7 days) and final (18 months). The data analysis used Friedman and Wilcoxon signed-rank tests (α = 0.05). Results: At baseline, all restorations were evaluated as alpha for all criteria. After 18 months, restorations were evaluated as alpha for secondary caries, color, and marginal pigmentation. There was significant difference between baseline and 18 months (p = 0.009) for marginal adaptation and postoperative sensitivity (p = 0.029), but no significant difference were verified between treatments (p = 0.433). The EGCG group had a restoration retention rate of 93.3%, while the control group had 96.7%. Conclusions: The application of EGCG solution on abfraction lesions did not significantly influence the survival of the restorations based on clinical and photographic criteria.

2D AND 3D STRUCTURAL STUDY OF RETE RIDGE IN ORAL MUCOSA AND SKIN PADDLE OF VARIOUS FREE FLAPS (구강내 점막과 유리피판에 사용되는 피부의 rete ridge에 관한 2차원 및 3차원적 구조 연구)

  • Ahn, Kang-Min;Chung, Hun-Jong;Kim, Yoon-Tae;Paeng, Jun-Young;Shin, Young-Min;Sung, Mi-Ae;Park, Hee-Jung;Myoung, Hoon;Hwang, Soon-Jung;Choi, Jin-Young;Choung, Pill-Hoon;Kim, Myung-Jin;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.2
    • /
    • pp.143-149
    • /
    • 2005
  • Objects : With the advancement of tissue engineering techniques, the effort to develop bioartificial mucosa have been actively delivered. The problem we met with this technique is the lack of mechanical strength between kerationocyte layer and dermal layer, where in the normal skin and mucosa, they are tightly bound with rete ridge structure. The purpose of this study is to understand the 2D and 3D structure of rete ridge of mucosa and skin paddle for rendering more biomimetic structure to the artificial mucosa. Materials and Methods : Oral mucosa and skin from the patients who received the oral surgery and maxillofacial reconstruction were harvested. The epidermis was separated from the dermis after treating with dispase for 12-16 hours. H&E staining was performed for 2D(dimensional) structure study and confocal LASER and SEM study were performed for 3D structure. Mean height(Sc) and arithmetic mean deviation(Sa) of all surface height were calculated. Results : The average height of rete ridge of skin flap was between $67.14{\mu}m$ and $194.55{\mu}m$. That of oral mucosa was between $146.26{\mu}m$ and $167.51{\mu}m$. Pressure bearing area and attached gingiva of oral mucosa showed deeper rete ridges. Conclusion : To obtain the adequate strength of artificially cultured keratinocyte skin and mucosa flap, it is necessary to imitate the original skin and mucosa structure, especially rete ridge. Through this study, 2D and 3D rete ridge structure of normal mucosa and skin was obtained. These results can be used as basis for substrate morphology for keratinocytes culture.

Biomimetic characteristics of mussel adhesive protein-loaded collagen membrane in guided bone regeneration of rabbit calvarial defects

  • Song, Woong-Kyu;Kang, Joo-Hyun;Cha, Jae-Kook;Lee, Jung-Seok;Paik, Jeong-Won;Jung, Ui-Won;Kim, Byung-Hoon;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.5
    • /
    • pp.305-316
    • /
    • 2018
  • Purpose: The aim of the present study was to evaluate the biocompatibility and barrier function of mussel adhesive protein (MAP)-loaded collagen membranes in guided bone regeneration (GBR). Methods: Eight male New Zealand white rabbits were used. Four circular defects (diameter: 8 mm) were created in the calvarium of each animal. The defects were randomly assigned to 1) a negative control group, 2) a cyanoacrylate (CA)-loaded collagen membrane group (the CA group), 3) a MAP-loaded collagen membrane group (the MAP group), and 4) a group that received a polycaprolactone block with MAP-loaded collagen membrane (the MAP-PCL group). Specimens were harvested at 2 weeks (n=4) and 8 weeks (n=4) postoperatively for observational histology and histometric analysis. Results: In the histologic analysis, MAP was completely absorbed without any byproducts. In contrast, some of the CA adhesive remained, showing an inflammatory reaction, at 8 weeks. In the MAP-PCL group, the MAP-loaded collagen membranes served as a barrier membrane despite their fast degradation in GBR. No significant difference was found in the amount of new bone between the MAP-PCL and MAP groups ($1.82{\pm}0.86mm^2$ and $2.60{\pm}0.65mm^2$, respectively). Conclusions: The MAP-loaded collagen membrane functioned efficiently in this rabbit calvarial GBR model, with excellent biocompatibility. Further research is needed to assess clinical applications in defect types that are more challenging for GBR than those used in the current model.

Recent Progress in Micro In-Mold Process Technologies and Their Applications (마이크로 인몰드 공정기술 기반 전자소자 제조 및 응용)

  • Sung Hyun Kim;Young Woo Kwon;Suck Won Hong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.1-12
    • /
    • 2023
  • In the current era of the global mobile smart device revolution, electronic devices are required in all spaces that people interact with. The establishment of the internet of things (IoT) among smart devices has been recognized as a crucial objective to advance towards creating a comfortable and sustainable future society. In-mold electronic (IME) processes have gained significant industrial significance due to their ability to utilize conventional high-volume methods, which involve printing functional inks on 2D substrates, thermoforming them into 3D shapes, and injection-molded, manufacturing low-cost, lightweight, and functional components or devices. In this article, we provide an overview of IME and its latest advances in application. We review biomimetic nanomaterials for constructing self-supporting biosensor electronic materials on the body, energy storage devices, self-powered devices, and bio-monitoring technology from the perspective of in-mold electronic devices. We anticipate that IME device technology will play a critical role in establishing a human-machine interface (HMI) by converging with the rapidly growing flexible printed electronics technology, which is an integral component of the fourth industrial revolution.