• 제목/요약/키워드: biometric recognition

검색결과 241건 처리시간 0.036초

대상객체 맥락 기반 생체정보 분석방법 (Method of Biological Information Analysis Based-on Object Contextual)

  • 김경준;김주연
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.41-43
    • /
    • 2022
  • 최근 코로나-19의 유행에 따른 전염병 예방 및 차단을 위해 비접촉 생체 정보 취득 및 분석 기술이 주목을 받고 있다. 습식 및 부착형 생체정보 취득 방법은 정확하게 생체정보를 측정 할 수 있는 장점이 있지 만 밀 접촉에 따른 전염이 높아지는 위험성을 내포하고 있다. 이러한 문제점을 해결하기 위해 사람의 지문, 얼굴, 홍채, 정맥, 음성, 서명 등의 생체 정보를 자동화된 장치로 추출하는 비접촉 방식은 빅데이터와 AI 기술 적용으로 데이터 처리 속도가 빨라지고 인식 정확도가 높아지면서 다양한 산업에서 활용이 증가하고 있다. 그러나, 비접촉식 생체 데이터 취득 기술의 정확도가 개선되었지만, 비접촉 방법은 측정 대상 객체를 둘러싸고 있는 외부 온도, 습도, 조도 등의 주위 환경에 많은 영향을 받아 측정정보가 왜곡되는 현상이 발생하고 또한 정확도가 떨어지는 단점이 있다. 본 논문에서는 생체정보 분석을 위한 개인화 정보(이미지, 신호 등)의 해석을 위한 맥락기반 생체신호 모델링 기법을 제안 한다. 맥락기반 생체정보 모델링 기법은 성능 개선을 위해 생체정보 측정의 정황 정보와 사용자 정보를 복합적으로 고려하는 모델을 제시한다. 제안 모델은 예측 값 확률을 최대화할 수 있는 맥락기반 신호 해석을 통한 특징 확률분포를 기반으로 신호 정보를 분석한다.

  • PDF

Emotion Recognition using Short-Term Multi-Physiological Signals

  • Kang, Tae-Koo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권3호
    • /
    • pp.1076-1094
    • /
    • 2022
  • Technology for emotion recognition is an essential part of human personality analysis. To define human personality characteristics, the existing method used the survey method. However, there are many cases where communication cannot make without considering emotions. Hence, emotional recognition technology is an essential element for communication but has also been adopted in many other fields. A person's emotions are revealed in various ways, typically including facial, speech, and biometric responses. Therefore, various methods can recognize emotions, e.g., images, voice signals, and physiological signals. Physiological signals are measured with biological sensors and analyzed to identify emotions. This study employed two sensor types. First, the existing method, the binary arousal-valence method, was subdivided into four levels to classify emotions in more detail. Then, based on the current techniques classified as High/Low, the model was further subdivided into multi-levels. Finally, signal characteristics were extracted using a 1-D Convolution Neural Network (CNN) and classified sixteen feelings. Although CNN was used to learn images in 2D, sensor data in 1D was used as the input in this paper. Finally, the proposed emotional recognition system was evaluated by measuring actual sensors.

스마트폰 환경의 인증 성능 최적화를 위한 다중 생체인식 융합 기법 연구 (Authentication Performance Optimization for Smart-phone based Multimodal Biometrics)

  • 문현준;이민형;정강훈
    • 디지털융복합연구
    • /
    • 제13권6호
    • /
    • pp.151-156
    • /
    • 2015
  • 본 논문에서는 스마트폰 환경의 얼굴 검출, 인식 및 화자 인증 기반 다중생체인식 개인인증 시스템을 제안한다. 제안된 시스템은 Modified Census Transform과 gabor filter 및 k-means 클러스터 분석 알고리즘을 통해 얼굴의 주요 특징을 추출하여 얼굴인식을 위한 데이터 전처리를 수행한다. 이후 Linear Discriminant Analysis기반 본인 인증을 수행하고(얼굴인식), Mel Frequency Cepstral Coefficient기반 실시간성 검증(화자인증)을 수행한다. 화자인증에 사용하는 음성 정보는 실시간으로 변화하므로 본 논문에서는 Dynamic Time Warping을 통해 이를 해결한다. 제안된 다중생체인식 시스템은 얼굴 및 음성 특징 정보를 융합 및 스마트폰 환경에 최적화하여 실시간 얼굴검출, 인식과 화자인증 과정을 수행하며 단일 생체인식에 비해 약간 낮은 95.1%의 인식률을 보이지만 1.8%의 False Acceptance Ratio를 통해 객관적인 실시간 생체인식 성능을 입증하여 보다 신뢰할 수 있는 시스템을 완성한다.

Biometric identification of Black Bengal goat: unique iris pattern matching system vs deep learning approach

  • Menalsh Laishram;Satyendra Nath Mandal;Avijit Haldar;Shubhajyoti Das;Santanu Bera;Rajarshi Samanta
    • Animal Bioscience
    • /
    • 제36권6호
    • /
    • pp.980-989
    • /
    • 2023
  • Objective: Iris pattern recognition system is well developed and practiced in human, however, there is a scarcity of information on application of iris recognition system in animals at the field conditions where the major challenge is to capture a high-quality iris image from a constantly moving non-cooperative animal even when restrained properly. The aim of the study was to validate and identify Black Bengal goat biometrically to improve animal management in its traceability system. Methods: Forty-nine healthy, disease free, 3 months±6 days old female Black Bengal goats were randomly selected at the farmer's field. Eye images were captured from the left eye of an individual goat at 3, 6, 9, and 12 months of age using a specialized camera made for human iris scanning. iGoat software was used for matching the same individual goats at 3, 6, 9, and 12 months of ages. Resnet152V2 deep learning algorithm was further applied on same image sets to predict matching percentages using only captured eye images without extracting their iris features. Results: The matching threshold computed within and between goats was 55%. The accuracies of template matching of goats at 3, 6, 9, and 12 months of ages were recorded as 81.63%, 90.24%, 44.44%, and 16.66%, respectively. As the accuracies of matching the goats at 9 and 12 months of ages were low and below the minimum threshold matching percentage, this process of iris pattern matching was not acceptable. The validation accuracies of resnet152V2 deep learning model were found 82.49%, 92.68%, 77.17%, and 87.76% for identification of goat at 3, 6, 9, and 12 months of ages, respectively after training the model. Conclusion: This study strongly supported that deep learning method using eye images could be used as a signature for biometric identification of an individual goat.

웨이브렛 변환과 LVQ를 이용한 홍채인식 시스템 (Human Iris Recognition System using Wavelet Transform and LVQ)

  • 이관용;임신영;조성원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권7호
    • /
    • pp.389-398
    • /
    • 2000
  • The popular methods to check the identity of individuals include passwords and ID cards. These conventional method for user identification and authentication are not altogether reliable because they can be stolen and forgotten. As an alternative of the existing methods, biometric technology has been paid much attention for the last few decades. In this paper, we propose an efficient system for recognizing the identity of a living person by analyzing iris patterns which have a high level of stability and distinctiveness than other biometric measurements. The proposed system is based on wavelet transform and a competitive neural network with the improved mechanisms. After preprocessing the iris data acquired through a CCD camera, feature vectors are extracted by using Haar wavelet transform. LVQ(Learning Vector Quantization) is exploited to classify these feature vectors. We improve the overall performance of the proposed system by optimizing the size of feature vectors and by introducing an efficient initialization of the weight vectors and a new method for determining the winner in order to increase the recognition accuracy of LVQ. From the experiments, we confirmed that the proposed system has a great potential of being applied to real applications in an efficient and effective way.

  • PDF

비정형 홍채 패턴 분리에 관한 연구 (A Study on Extraction of Irregular Iris Patterns)

  • 원정우;조성원;김재민;백강철
    • 한국지능시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.169-174
    • /
    • 2008
  • 최근 정보화 시대에 발맞추어 보안에 관한 중요성이 증가하고 있다. 따라서 지문, 장문, 서명, 홍채 인식과 같은 생체 인식시스템에 대한 관심이 급증하고 있고, 그 중에서 가장 신뢰성과 보안성에서 뛰어난 홍채 인식에 대한 연구가 활발히 진행중이다. 홍채 인식의 환한 연구는 많이 진행되어 왔지만 홍채 인식의 가장 큰 이슈는 홍채 영역 분할과 특징 추출로 할 수 있다. 본 논문에서는 곡선에 유연한 곡선 검출기를 이용하여 기존 원형 검출기가 갖는 문제점을 극복하고, 보다 정확한 홍채 영역 분할을 이루었다. 따라서 주변 환경의 변화에 신속히 대처할 수 있고, 기하학적인 경계 검출에 유용하다.

광학식 지문센서에서의 위조 지문 검출 방법 (A Detection Method of Fake Fingerprint in Optical Fingerprint Sensor)

  • 이지선;김재환;채진석;이병수
    • 한국멀티미디어학회논문지
    • /
    • 제11권4호
    • /
    • pp.492-503
    • /
    • 2008
  • 최근 개인 인증 기술의 발달과 중요성이 높아짐에 따라 분실이나 도용 등의 위험이 적은 바이오 인식 기술이 빠르게 보급되고 있다. 특히, 인식률이 높고 이용하기 쉬운 지문 인식 시스템이 홍채 인식, 얼굴 인식, 정맥 인식 등의 다른 바이오 인식 시스템보다 훨씬 많이 사용되고 있는 것으로 나타나고 있다. 그러나 이와 같은 지문 인식 시스템은 지문 데이터를 입력할 때, 인공적으로 만들어진 위조 지문이 입력될 수 있는 문제점을 가지고 있다. 따라서 이와 같은 문제를 해결하기 위해 본 논문에서는 광학식 지문센서에서 발생되는 빛이 생체 지문을 투과하면서 감쇠되는 정도를 측정하고, 일정시간에 따른 단계별 빛의 투과량의 명암 차이를 분석하여 위조 지문의 입력을 검출하는 방법을 제안하였다. 제안된 시스템의 성능 향상을 입증하기 위해 기존에 사용되던 지문 온도 측정을 병행하는 멀티센서(Multi-Sensor) 인식 시스템과 성능 비교 실험을 수행하였으며, 그 결과, 위조 지문에 대한 검출률이 약 32.6% 정도 향상된 것을 확인함으로써 지문 인식시스템에서의 보안 문제의 해결 가능성을 제시하였다.

  • PDF

A Multi-Level Integrator with Programming Based Boosting for Person Authentication Using Different Biometrics

  • Kundu, Sumana;Sarker, Goutam
    • Journal of Information Processing Systems
    • /
    • 제14권5호
    • /
    • pp.1114-1135
    • /
    • 2018
  • A multiple classification system based on a new boosting technique has been approached utilizing different biometric traits, that is, color face, iris and eye along with fingerprints of right and left hands, handwriting, palm-print, gait (silhouettes) and wrist-vein for person authentication. The images of different biometric traits were taken from different standard databases such as FEI, UTIRIS, CASIA, IAM and CIE. This system is comprised of three different super-classifiers to individually perform person identification. The individual classifiers corresponding to each super-classifier in their turn identify different biometric features and their conclusions are integrated together in their respective super-classifiers. The decisions from individual super-classifiers are integrated together through a mega-super-classifier to perform the final conclusion using programming based boosting. The mega-super-classifier system using different super-classifiers in a compact form is more reliable than single classifier or even single super-classifier system. The system has been evaluated with accuracy, precision, recall and F-score metrics through holdout method and confusion matrix for each of the single classifiers, super-classifiers and finally the mega-super-classifier. The different performance evaluations are appreciable. Also the learning and the recognition time is fairly reasonable. Thereby making the system is efficient and effective.

CNN 알고리즘을 기반한 얼굴인식에 관한 연구 (A Study on the Recognition of Face Based on CNN Algorithms)

  • 손다연;이광근
    • 한국인공지능학회지
    • /
    • 제5권2호
    • /
    • pp.15-25
    • /
    • 2017
  • Recently, technologies are being developed to recognize and authenticate users using bioinformatics to solve information security issues. Biometric information includes face, fingerprint, iris, voice, and vein. Among them, face recognition technology occupies a large part. Face recognition technology is applied in various fields. For example, it can be used for identity verification, such as a personal identification card, passport, credit card, security system, and personnel data. In addition, it can be used for security, including crime suspect search, unsafe zone monitoring, vehicle tracking crime.In this thesis, we conducted a study to recognize faces by detecting the areas of the face through a computer webcam. The purpose of this study was to contribute to the improvement in the accuracy of Recognition of Face Based on CNN Algorithms. For this purpose, We used data files provided by github to build a face recognition model. We also created data using CNN algorithms, which are widely used for image recognition. Various photos were learned by CNN algorithm. The study found that the accuracy of face recognition based on CNN algorithms was 77%. Based on the results of the study, We carried out recognition of the face according to the distance. Research findings may be useful if face recognition is required in a variety of situations. Research based on this study is also expected to improve the accuracy of face recognition.

A Study on Smart Tourism Based on Face Recognition Using Smartphone

  • Ryu, Ki-Hwan;Lee, Myoung-Su
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제8권4호
    • /
    • pp.39-47
    • /
    • 2016
  • This study is a smart tourism research based on face recognition applied system that manages individual information of foreign tourists to smartphone. It is a way to authenticate by using face recognition, which is biometric information, as a technology applied to identification inquiry, immigration control, etc. and it is designed so that tourism companies can provide customized service to customers by applying algorism to smartphone. The smart tourism system based on face recognition is a system that prepares the reception service by sending the information to smartphone of tourist service company guide in real time after taking faces of foreign tourists who enter Korea for the first time with glasses attached to the camera. The smart tourism based on face recognition is personal information recognition technology, speech recognition technology, sensing technology, artificial intelligence personal information recognition technology, etc. Especially, artificial intelligence personal information recognition technology is a system that enables the tourism service company to implement the self-promotion function to commemorate the visit of foreign tourists and that enables tourists to participate in events and experience them directly. Since the application of smart tourism based on face recognition can utilize unique facial data and image features, it can be beneficially utilized for service companies that require accurate user authentication and service companies that prioritize security. However, in terms of sharing information by government organizations and private companies, preemptive measures such as the introduction of security systems should be taken.