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Abstract 
 
Technology for emotion recognition is an essential part of human personality analysis. To 
define human personality characteristics, the existing method used the survey method. 
However, there are many cases where communication cannot make without considering 
emotions. Hence, emotional recognition technology is an essential element for communication 
but has also been adopted in many other fields. 
A person's emotions are revealed in various ways, typically including facial, speech, and 
biometric responses. Therefore, various methods can recognize emotions, e.g., images, voice 
signals, and physiological signals. Physiological signals are measured with biological sensors 
and analyzed to identify emotions. This study employed two sensor types. First, the existing 
method, the binary arousal-valence method, was subdivided into four levels to classify 
emotions in more detail. Then, based on the current techniques classified as High/Low, the 
model was further subdivided into multi-levels. Finally, signal characteristics were extracted 
using a 1-D Convolution Neural Network (CNN) and classified sixteen feelings. Although 
CNN was used to learn images in 2D, sensor data in 1D was used as the input in this paper. 
Finally, the proposed emotional recognition system was evaluated by measuring actual 
sensors. 
 
 
Keywords: Convolutional Neural Network (CNN), Emotion Recognition, Physiological 
Signal 
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1. Introduction 

Emotion research has impacted many fields in modern society [1]. Human engineering 
systems have developed enormously recently, and many recent studies have analyzed human 
conditions, such as human emotions [2]. Ergonomics is continuously integrated with 
biomechanics, cognitive engineering, human-computer interface (HCI), emotional 
engineering, and user experience (UX) to measure and analyze practical research areas [3]. 
For AI technology to effectively collaborate or respond to humans, recognizing human 
emotions or states is essential. In particular, biosignal-based state recognition technology is a 
core technology that can be the basis of remote medical treatment or smart healthcare 
technology. Therefore, it is necessary to develop a biosignal-based emotion recognition 
technology. 

These areas of physical, cognitive, and emotional interactions between humans and systems 
increase the importance of user-friendly interface design to improve usability, stability, 
emotional quality, and system efficiency and provide differentiated use experiences [4].  
Emotions can be recognized in various ways, including facial expressions, voice, signals, and 
brain waves. They can also show in facial expressions and voice, but these can be hidden just 
by wearing a mask [5-7]. Many recent advances in emotional recognition technology have 
been using physiological sensors to measure honest feelings [8].   Physiological sensors have 
also been actively investigated to help recognize emotions by combining technology and 
physiology. Since the extent to which feelings are expressed or the emotional criteria have 
various limitations as subjective indicators, different emotional models have been proposed 
and grouped through models [9]. 

Physiological sensors to recognize emotions typically include electromyography (EMG), 
photoplethysmography (PPG), and galvanic skin response (GSR) sensors. These sensors 
measure autonomic nervous system responses, which control heart muscle, smooth muscle, 
and external secretion, and are affected by changes in emotions and various body reactions. 
EMG can measure muscle tension due to muscle activity or stress [10], and PPG can now 
measure the amount of blood flowing through vessels to determine vessel contraction and heart 
rate [11]. GSR measures skin temperature and characteristic electrical changes [12]. 
Electrocardiogram (ECG) measures the heart’s contraction and checks the heart rate and inter-
beat intervals (IBI). Other sensors associated with the autonomic nervous system can also 
measure physiological signals. 
 
Current emotional awareness is based on two emotional models [13]  

• the six basic feelings of happiness, sadness, surprise, fear, anger, and disgust [14]. 
• categories based on the second arousal-valence axis [15].  

Rather than classifying six emotions, I used the second method of recognizing emotions as 
arousal and valence values to express various feelings. Previous studies have used a two-stage 
classification model based on the arousal-valence axis. However, this has the disadvantage of 
classifying emotions into only four categories. On the other hand, most recent studies that 
categorize emotions using sensors combine EEG and other sensors. Deep learning methods 
have been recently applied to physiological processing signals, such as EEG or voice, 
achieving comparable results with conventional methods [24-26]. Martinez et al. were the first 
to propose CNNs to establish physiological models for emotion, with many subsequent deep 
emotion recognition studies [27]. However, EEG requires an algorithm that is too complex to 
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analyze brainwave signals, and the subject needs 10-20 sensors to be attached to provide 
reliable brain wave data. Hence, data collection is difficult to apply to everyday life, even if it 
can be well classified. 

Therefore, this paper proposed a more granular arousal-valence 4 step model that will allow 
sixteen emotional categories and recognize new feelings by combining segmented ones. I used 
EMG and PPG sensors to measure psychologically relevant signals and provide data for 
emotion classification. I propose a two-dimensional (2D) classification system using a 2D 
emotional model separated by arousal-valence and a measurable model for instant emotional 
changes by using less than 1 s to extract characteristics. Emotional characteristics for each 
emotion category were extracted using a one-dimensional (1D) convolutional neural network 
(CNN) [16]. Consequently, I could verify the proposed four stages arousal-valence system 
better than previous studies. The remainder of this paper is organized as follows. Section 2 
reviews Russel’s emotion model and introduces the necessity of redefinition by subdividing 
the emotion model. Section 3 describes our emotion recognition model based on the CNN 
network. Section 4 presents our experimental results and detailed discussions. Section 5 
summarizes our conclusions. 

2. Definition of Extended Emotion Model Based on Russel’s Emotion 
Model 

This section firstly introduces Russel’s emotion model. Then I describe the necessity of 
redefinition by the proposed subdivision model. 

2.1 Russel’s Emotion Model Analysis 

Before recognizing emotion, I have to define an emotion model to enable emotion 
classification. An emotion is an action caused by own or another person feeling about 
something or a situation. Human emotions include subjective criteria; hence it is challenging 
to express emotions objectively or ultimately numerically. Various models have been 
developed to provide quantitative figures for feelings, such as the emotion variation detection 
or dimension approaches. As shown in Fig. 1, estimating emotional variation involves 
graphical representation and numerical verification of the six basic emotions (joy, disgust, 
anger, sadness, surprise, and fear). It can identify mood changes and incorporate new emotions 
from the basic emotions. 

 

Fig. 1. Examples of physiological signal patterns for various emotions over time 
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The dimensional approach is a typical example of the Russell emotional model. Russell 
proposed a two-dimensional emotional model that divided emotions along the arousal and 
valence axes to express emotions quantitatively. Arousal indicates the level of emotional 
excitement, where smaller values represent more relaxed or more boring, whereas higher 
values indicate more excitement or anger. Valence indicates the positive or negative emotional 
level. For example, fear would be a very negative valence concept, whereas boredom would 
be a positive one. The Russell model allows emotions to be expressed in a two-dimensional 
plane [17]. However, I need a more precise criterion than “high” and “low” for physiological 
emotion signals to identify the various emotions precisely using the numerical method. 
Therefore, I propose a disaggregated emotional model based on emotional dimensionality. The 
following section describes the proposed redefined emotion model to exactly segment various 
emotions from physiological emotion signals. 

2.2 Definition of Extended Emotion Model for Segmentation of Physiological 
Emotion Signals 
This section proposes a disaggregated emotional model based on the arousal-valence 
approaches described in Section 2.1. Russell models can be expressed in the arousal and 
valence variables, divided into four quadrants. However, the Russell model is somewhat 
simplistic, and hence I disaggregate the model into multi-levels. To investigate the most 
efficient number of sub-classes, I conduct the simulation for emotion classification of various 
emotion signals, including EMG and PPG signals using fuzzy C-Means clustering. 

 
Fig. 2. Example results of emotion classification for physiological signals using fuzzy C- means 

clustering (left: 4 class, right: 5 class) 

Fig. 2 shows example results of emotion classification for physiological signals. In Fig. 2, the 
left image illustrates the classification result in the case of dividing physiological signals into 
the four classes, and the correct image represents the result for 5-class clustering Table 1 
shows the classification accuracy to determine the appropriate number of levels in 2 to 6 steps 
using the fuzzy C-means algorithm. Sensor values were analyzed using characteristics under 
classification by the fuzzy C-means algorithm. In Table 1, classification accuracy declined 
sharply for the five-level model, whereas the four-level model achieves 80% and can express 
more complex emotions than the standard Russell model.  

Table 1. Analysis of multi-class for emotion signals using Fuzzy C-Means 
The number of class 2 3 4 5 6 

Accuracy 90.8 88 84.2 50.8 36.1 

Precision 0.77 0.56 0.23 0.37 0.31 
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From the results of Table 1, I can know that the appropriate number of levels is four and 
employed a four-level emotional model rather than the usual two-level arousal-valence model 
to recognize the emotion status precisely. The proposed emotion model allows more granular 
emotion expression than the conventional two-level model. Current models also struggle to 
express the level of emotion defined as an adjective. The proposed model can classify emotions 
into sixteen domains rather than four domains and describe the steps for a given emotion, as 
shown in Fig. 3. 

 

 

Fig. 3. The proposed emotion model for physiological signals by four-level division 

 

3. Emotion Recognition with Multi-Physiological Signals 
This section explains how to generate CNN input for learning and the normalization required 
to create it. Typical CNN inputs comprise two-dimensional images, whereas I propose that the 
one-dimensional signals are segmented into their underlying periodicity for input. The CNN 
model can be freely designed depending on the application. Detailed descriptions for these 
modules are introduced as follows. 

 

3.1 Structure of Proposed Emotion Recognition System 
Fig. 4 shows the structure of the proposed CNN network for emotion recognition. As shown 
in Fig. 4, our proposed system primarily consists of two parts: single pulse segmentation and 
personal normalization and classification modules. The first step is the functional division part 
of making single pulse data for physiological emotion data and functional normalization to 
reduce errors that cause biased signals. The classification part extracts the emotion features 
for multi-physiological signals, EMG and PPG. Then it recognizes the emotion status using 
these extracted features.  I use the sixteen-emotion model defined in the previous section to 
classify emotions in the classification part. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 3, March 2022                             1081 

 

 

Fig. 4. Proposed emotion recognition system using multi-modal Physiological Signals 

 

3.2. Single-Pulse Segmentation and Personal Normalization 
Before training the physiological emotion data, I first have to make the physiological signal 
with a single-cycle length to extract the feature using CNN. Then I manufacture these data into 
uniform data using personal normalization. Details descriptions are presented as follows. 

3.2.1 Single Pulse Segmentation using Peak Point Values 

Most CNN inputs comprise images with constant width and length. Physiological signals have 
a constant cycle, which can be segmented following set criteria and used as inputs, as shown 
in Fig. 5. As shown in Fig. 5, EMG signals were segmented based on the low peak since there 
were two high peaks, and PPG signals were segmented based on the high peak. I truncated the 
1D sensor data to pulse length, with both sensor data being the same length to generate training 
input data with the same length. As a result, I create the input physiological data for EMG and 
PPG. These one-pulse data of EMG and PPG for sixteen-emotion are used as the input data of 
CNN to extract features. 

  
Fig. 5. Sensor data periodicity (left: PPG signal, right: EMG signal) 
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3.2.2 Personal Normalization for Segmented Single-Cycle Physiological Data 

Normalization is usually required to work with data from multiple subjects rather than just one 
person [18] and can be achieved in several ways. Most of the data are normalized based on the 
mean, median, lowest, and highest values, as shown in Fig. 6. In Fig. 6, Fig. 6(a) illustrates a 
plot that does not normalized, and Fig. 6(b) represents the data distribution that signals do not 
match. Fig. 6(c) displays the normalized data using the appropriate criteria. The distribution 
is more consistent, and your CNN and CNN training can proceed correctly. 

Since the minimum and maximum values of the sensor differ from person to person, the 
average value is different. Therefore, emotional training cannot proceed accurately without 
normalization. Therefore, terms of the EMG values, which are prone to many oscillations, 
except for the low and high peak values, were normalized based on the average by (1),  

𝑑𝑑𝚤𝚤�  ∶= 𝑑𝑑𝑖𝑖−𝐸𝐸(𝑑𝑑)
𝜎𝜎𝑑𝑑

                                                        (1) 

𝜇𝜇𝑑𝑑 = 1
𝑁𝑁
∑ 𝑑𝑑𝑖𝑖𝑁𝑁
𝑖𝑖=1                                                        (2) 

𝜎𝜎𝑑𝑑 =  �1
𝑁𝑁
∑ (𝑑𝑑𝑖𝑖 −  𝜇𝜇𝑑𝑑2)𝑁𝑁
𝑖𝑖=1                                                       (3) 

where, 𝑑𝑑𝚤𝚤�  presents the normalized EMG data, 𝜇𝜇𝑑𝑑 and 𝜎𝜎𝑑𝑑 means average and standard variation 
among one-pulse EMG data respectively. 

Although PPG data is relatively stable and smooth for a given participant, signal amplitude 
varies significantly between participants. Therefore, in terms of PPG data, normalization was 
performed using the lowest and highest values using (4), 

𝑑𝑑𝚤𝚤� =  𝑑𝑑𝑖𝑖− 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

                                                       (4) 

where, where, 𝑑𝑑𝚤𝚤�  presents the normalized PPG data, 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  means minimum and 
maximum value among one-pulse PPG data respectively. 
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                      (a)                              (b)                                (c) 

Fig. 6. Examples of physiological emotion signal normalization: (a) without normalization, (b) 
incorrect normalization, (c) correct normalization 

 

3.4 Emotion Feature Extraction and Classification using Convolution Neural 

Network 

As mentioned above, the CNN model can be freely designed depending on the application. 
The proposed emotion recognition model uses CNN to extract features representing emotional 
characteristics. However, feature map aspects learned in the upper and lower layers differ 
greatly. Thus, the CNN should be designed according to inputs to distinguish the lower and 
upper layers. Previous studies have highlighted that at least two CNN layers are required to 
extract physiological sensor characteristics reliably. Fig. 7 shows the structure of the CNN 
network for physiological emotion data.  

In Fig. 7, important CNN parameters include the number of convolution filters, size, and stride 
size. The larger number of filters will enable more diverse characteristics to be learned. 
Therefore, I employed ten filters for the first convolution layer and 20 for the second. The 
filter size was 1x3 for all layers, and the stride was set to 1. Relu layers were used for non-
linearity with two subsequent max-pooling layers. Convolution and max-pooling filter sizes 
were set to the optimum value from training, assessed by comparing performance according 
to filter size, as shown in Table 2 and 3 details regarding the proposed CNN model, 
respectively. 
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Fig. 7. Structure of CNN network for physiological emotion feature extraction and recognition 

Table 2. Performance Comparison by Parameter 

Layer Parameter / Performance 

Convolution 
Size 1x3 1x4 1x5 

Accuracy 88.2 83.6 80.7 

MaxPooling 
Size 1x2 1x3 1x4 

Accuracy 89.2 77.83 70.06 

 

The designed CNN model was then trained using the training dataset. It is critical to avoid 
overwriting when training the model. Dropout and data augmentation techniques were 
employed to prevent overfitting. I used a dropout layer learned through neural networks, which 
has been reduced by omitting some neurons in the input or hidden layers. I set max epochs, 
initial learning rate, mini-batch size to 100, 0.001, 64, respectively, and used softmax as the 
activation function for training. Table 3 presents the principal parameters used in our CNN 
network. 
 

Table 3. Parameters in CNN Model 
Layer Conv. 1 Maxp. 1 Conv. 2 Maxp. 2 F.C. 

Size 1x3 1x2 1x3 1x2 600 

Stride 1 2 1 2  

I used the training data to train the CNN network and employed the validation dataset to 
determine model performance. The trained model performance was then tested using the test 
dataset. The 1D sensor data inputs were created as discussed in sections 3.2.1 and 3.2.2 for 
model inputs. Since the optimal parameters for training are unknown, i performed a 
preliminary test and selected appropriate values depending on the data and application. Once 
training is completed and the feature map is created, classify it through a fully connected layer. 
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4. Experimental Result and Analysis 

4.1 Experimental Environments 

4.1.1 Experimental System Configuration 
The hardware platform comprised a Windows 10 operating system with an Intel Core i7-
4770K processor running at 3.70 GHz with 8GB RAM. Sensor data was measured directly. 
Reference datasets for emotional studies are measured mainly by non-Korean researchers in 
Europe and the US, which is inconsistent with Korean sentiments. Data sets used in this paper 
were measured for Koreans, in a restricted environment, minimum of 24 hours prohibited the 
consumption of drugs that could affect the central nervous system, including cigarettes, coffee, 
and alcohol. Therefore, the dataset will allow emotion recognition appropriate to Korean 
emotions. Fig. 8 shows sensor signals and the experimental environment employed to acquire 
sensor measurements. 
 

Fig. 8. The appearance of the sensor signal from the experimental system 
 

I randomly divided the collected dataset into training, test, and validation datasets, with 
112,000, 24,000, and 11,200 sensor data in each set, respectively. The validation dataset was 
employed to ensure training was moving in the right direction. Fig. 8 shows typical dataset 
examples. 
 
I used a P400 [19] physiologic recorder to record physiological signals. It can measure various 
signals, including bioelectrical and physiological signals. Up to six measurement modules can 
be measured simultaneously from four channels. Moreover, sensor measurements can be 
checked in real-time and recorded or analyzed by sending them to the PC. I used the base 
module to connect various physiological sensor outputs, including amps and the bio-Amp to 
measure blood flow were used to measure physiological signals such as PPG, ECG, 
electrocardiogram, and safety. Table 4 shows the P400 base module characteristics and 
specifications, and Fig. 9 shows the whole system. Additional sensors can be connected to the 
base module to measure other biological signals as required. 
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Table 4. Experimental System Specification 
Category Specification 

Input Siganl 

channels 4 

Input voltage range 
Physiologic module: 

2.5V external 
input signal: 5V 

Output signal  
Sampling rate Maximum 2000 SPS 

ADC resolution 12 bit 

Communication 
method (speed) USB 1.1 (12Mbps) 
Power supply Input: 80–240VAC; Output: 12V DC 

Voltage / Current 12V / 2A 
 

 
Fig. 9. Block diagram of the experimental system 

 

4.1.2 Stimuli Selection for Experimental Dataset Construction 
Generally, emotion classification requires a stimulus to trigger emotions. Previous studies 
have selected various stimuli, including photos, videos, and music. The DEAP study used 
photographs as stimuli to measure emotions [20].  

Fig. 10. International Affective Picture System (IAPS) 
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Fig. 10 shows a typical stimulus image used in the emotional recognition trial of the 
international affective picture system (IAPS). Videos were used as stimuli in DECAF studies 
[21]. Music and photography can evoke emotions through sight and hearing, respectively [22]. 
Creating emotions from images without sound or sounds without images is not as efficient as 
using both simultaneously [23]. 

I selected video to stimulate hearing and seeing as the stimulus for this trial. The video was 
selected subject to a survey on the same age group as the final participants (20-the 30s). A 
total of thirty people were surveyed and participated in an experiment. I used 80 image 
sequences for sixteen emotions on four-level arousal and valence axes. After viewing a 5-10 
min video, participants selected the level of arousal and valence (both had four possible 
stages). As a result, I chose a total of 32 videos based on the highest scoring images for each 
area and edited them to 3-5 min duration. Physiological signals were measured for the final 
selected video. 

4.1.3 Physiological Dataset Construction 
Most physiological signal studies use a recognized dataset. However, the sensor type and 
measurement method vary depending on the study purpose(s). Researchers generally use the 
authorized dataset suitable for research to verify the performance. However, in the case of our 
study, there is no dataset suitable for sixteen-emotion conditions using EMG and PPG 
physiological signal data. Therefore, I measured sensors directly for each participant and 
created the required datasets by ourselves. Sensor measurements were based on the video 
selected in Section 4.1.1. Individual data sets were constructed and tested using the 
conventional 4-level arousal-valence model, and then all datasets were collated for the final 
analysis. Table 5 shows the number of datasets created. 
 

Table 5. Emotion dataset configuration using physiological emotion signals 
 

 # of Training Data # of Test Data 

Arousal 1 / Valence 1 42000 9000 

Arousal 2 / Valence 2 42000 9000 

Arousal 3 / Valence 3 42000 9000 

Arousal 4 / Valence 4 42000 9000 

 

4.2 Experimental Results 
This section describes experimental results obtained using the previously described dataset. 
The CNN as a feature extractor provided superior outcomes than hand-crafted feature sets. 
Conventional arousal-valence models categorize four emotions from the two-level arousal-
Valence model, whereas the proposed approach offers sixteen emotions more detail. Despite 
the increased number of emotions, accuracy also improved using the proposed method.  

4.2.1 Accuracy for Emotion Recognition by Participants 
This section describes the outcomes using the dataset generated in this study. I experimented 
with assessing the accuracy of arousal and valence data selection. Once, thirty participants 
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watched the image sequence and voted the emotion for that image sequence. If the voted 
results matched the pre-labeled emotion, I regard that image sequence is correct. Fig. 11 shows 
arousal and valence accuracy for data selection using EMG data by thirty persons, respectively. 
In Fig. 11, individual accuracy ranged from 92-98%, with 92% mean accuracy. 

 
Fig. 11. Experimental results of data selection accuracy of EMG data by Participants 

 
Fig. 12 also shows arousal and valence accuracy for data selection using PPG data. Similar to 
EMG, individual accuracy ranged from 90-94%, with an average of 92%. Overall accuracy 
for arousal and valence were 83.5% and 83.1%, respectively, with 1.43% and 1.23% precision, 
respectively. 

 
Fig. 12. Experimental results of data selection accuracy of PPG data by Participants 

 
Table 6 shows classification results incorporating all data using the proposed CNN-based 
method, and Tables 7 and 8 present a confusion matrix for classification accuracy for arousal 
and valence levels.  
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In Table 6, these experimental results represent average classification accuracy obtained for 
four-level arousal and valence over 100 trials. As shown in Fig. 6, EMG data classification 
accuracy for four-level arousal and valence is 89.2% and 88%, respectively. In addition, that 
of PPG data presents 87% and 86.5%, respectively. 
 

Table 6. Accuracy results of emotion recognition using the proposed method 
 

Data Type Arousal Accuracy (%) Valence Accuracy (%) 
EMG 89.2 88 
PPG 87 86.5 
EMG+PPG (proposed) 89.25 88.9 

 
In the case of the proposed method, the fusion of EMG and PPG data shows 89.25% for arousal 
accuracy and 88.9% for valence accuracy, which means that confusion of multi-physiological 
signals is efficient without conflict comparing each that of signal type. Comparing each 
Arousal and Valence four-levels is also shown in Table 7 and Table 8. 
 

Table 7. Confusion matrix for four-level arousal by the proposed method 
 

Accuracy Arousal 1 Arousal 2 Arousal 3 Arousal 4 
Arousal 1 91.6 6.6 0.8 1.0 
Arousal 2 7.7 88.3 2.8 1.2 
Arousal 3 1.8 2.3 87.5 8.4 
Arousal 4  0.9 1.3 7.5 90.25 

 
As shown in Table 7 four-level arousal model showed superior recognition performance in 
terms of diversity and accuracy than two-level arousal since arousal 1, and 2 show similar 
feelings in the existing two-level emotion model. Moreover, Arousal 3 and 4 also have a higher 
probability of losing each other for the same reason as arousal 1 and 2. 

 
Table 8. Confusion matrix for four-level valence by the proposed method 

 
Accuracy valence 1 valence 2 valence 3 valence 4 

valence 1 87.3 8.1 2.1 2.5 
valence 2 6.6 89.8 1.7 1.9 
valence 3 1.4 2.3 90.1 6.2 
valence 4 1.1 2.6 7.4 88.9 

 
As shown in Table 7 four-level arousal model showed superior recognition performance in 
terms of diversity and accuracy than two-level arousal since arousal 1, and 2 show similar 
feelings in the existing two-level emotion model. Moreover, Arousal 3 and 4 also have a higher 
probability of losing each other for the same reason as arousal 1 and 2. Table 9 shows the 
experimental emotion recognition results for sixteen emotions using the EMG and PPG fusion 
datasets. 
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Table 9. Experimental results of emotion recognition for sixteen emotions by the proposed method 
 

Emotions Distress Disgust Sad Anxious Annoyed Impatient Worried Bored 

Accuracy 92 87 84 90 87 86 82 86 

Emotions Astonished Convinced Confident Serious Excited Delighted Pleased Calm 

Accuracy 88 85 86 87 91 85 88 93 

 
As shown in Fig. 9, our proposed method offers an average of 87% recognition accuracy for 
sixteen emotions though the physiological emotion data is one-pulse. From the results, I can 
know that the proposed approach can be applied to real-world situations by the person because 
the only one-pulse physiological signal to recognize the emotions.  

4.2.2 Accuracy comparison of emotion recognition with existing methods 
In this section, I proposed a CNN-based method to extract features. However, previous studies 
have also considered artificial neural networks (ANNs) and support vector machines (SVM) 
using hand-crafted features [24]. Sensors were measured and used directly, similar to the 
current approach. Table 10 details the proposed algorithms and compares outcomes with the 
current approach. 
 

Table 10. Characteristics of comparison algorithms: (a)ANN-based method, (b)SVM-based method 
 

Method ANN algorithm Proposed algorithm 

Similarities 
Based on Russell’s emotional model 

Measure physiological sensor directly 

Differences 

Two-level arousal/valence two class Four level arousal/valence 

EEG, ECG, PPG EMG, PPG 
Stimuli: Picture Stimuli: video 

ANN CNN 

(a) 
 

Method SVM algorithm Proposed algorithm 

Similarities 
Using EMG and PPG sensor 

Measure physiological sensor directly 
Stimuli: Video 

Differences 
Four basic emotion model Four-level arousal/valence 

Emotion model 
EOG, ECG, PPG EMG, PPG 

Hand-crafted feature and SVM CNN 
(b) 

 
Because of the characteristics of the SVM algorithm, I carry out the experiment for recognition 
accuracy for emotion data. Moreover, I compare the recognition performance with the SVM-
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based method. For the SVM-based reduction category experiment, 100 segments were 
extracted from each of the subjects considered highly emotional during the video viewing and 
used as experimental data. The results of recognizing emotions using 100 bio-sensor data are 
shown in Table 11. 
 

Table 11. Experimental results for four representative emotions: (a) SVM-based method, (b) the 
proposed method 

 
Emotion Happy Joy Fear Sad 
Happy 79/100 5/100 15/100 1/100 
Joy 8/100 75/100 4/100 13/100 
Fear 12/100 2/100 82/100 4/100 
Sad 0/100 18/100 6/100 76/100 

(a) 
 

Emotion Happy Joy Fear Sad 
Happy 89/100 5/100 10/100 1/100 
Joy 10/100 84/100 6/100 11/100 
Fear 7/100 2/100 86/100 4/100 
Sad 0/100 7/100 5/100 87/100 

(b) 
 
As shown in Table 11, experimental results have shown that the proposed system using 
characteristic information extracted from a bio-sensor has identified emotions with a 
probability of 87.5%. Whereas the existing method averagely presents 78% accuracy. 
Therefore, our approach using CNN, a deep learning algorithm, shows an improvement of 
more than 9.5% over the results of comparison algorithms using hand-made features and SVM 
algorithms. These results stem from the robust feature extraction by the CNN network and 
personal normalization for one-pulse physiological emotion data. 
As seen in the experimental results from Table 6 to Table 10, the proposed method showed 
more accurate recognition performance for more emotions than the existing methods, which 
can be analyzed as synergy in accuracy because of the emotional data for PPG and the 
emotional data for EMG complement each other. In addition, the fact that the EEG and PPG 
individual recognition test results also showed better emotion recognition accuracy 
performance than the existing methods indicates that the proposed method is also superior to 
the existing method. 

5. Conclusion 
This paper proposed an emotion recognition system based on directly measured EMG and 
PPG bio-sensor data characterized and classified using a 1D CNN. The proposed algorithm 
redefined the conventional two-level Russel’s model to the four-level models, providing 
significantly more detailed emotion separation. A total of 32 image sequences were selected 
and measured considering the genre and bits of images used as stimuli to classify the following 
emotions accurately. The proposed system identified emotions with 87% average accuracy for 
the four-level arousal-valence model, whereas classification using SVM and hand-crafted 
features produced 78% accuracy for the two-level e arousal-valence model. Increasing the 
number of stages would reduce accuracy, but the proposed model provided comparable 
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performance. Thus, the proposed model can accurately identify more complex emotions. 
Algorithms using physiological sensors to categorize emotions or user states have traditionally 
been used for medical purposes only. However, the proposed method is expected to be utilized 
in various fields of mobile-based healthcare as it can quickly and easily identify emotional or 
health status through the biosensor attached to the device in a smartphone or mobile device. 
The fields to which the specifically proposed technology can be applied are as follows. 
 

- The user's emotion recognition technology can be used in robot artificial intelligence, 
home IoT, interactive home shopping, virtual reality, and architectural interior fields, 
and has various application fields such as computer interface and biosignal-based 
HCI/HRI. 

- The PPG technology of this study can be applied to a driving assistance system by 
measuring the fatigue level of a car driver, a correction parameter for patterning when 
measuring an EMG, and a health care system such as fatigue or stress measurement. 

- EMG-based technology can be used as a control system for drones or robots and as a 
steering system for cars for the disabled. 

- The user's body, state recognition technology, can be used for unmanned material 
transport technology, construction automation equipment control technology, 
building defect detection and repair technology, driver driving environment 
information provision technology, and car door lock technology. 

 
Moreover, human emotions can be expressed not as one at a time but as a combination of 
several psychological states. However, it can be said that this study is meaningful in 
recognizing representative and primary emotions among them. As a future study, I plan to 
study a method for identifying emotions based on more diverse biosignals. In addition, I plan 
to study a methodology to analyze a person's personality or characteristics by measuring the 
change in emotion based on the recognized emotion. 
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