• Title/Summary/Keyword: biometric feature

Search Result 114, Processing Time 0.028 seconds

Multimodal Biometric Using a Hierarchical Fusion of a Person's Face, Voice, and Online Signature

  • Elmir, Youssef;Elberrichi, Zakaria;Adjoudj, Reda
    • Journal of Information Processing Systems
    • /
    • v.10 no.4
    • /
    • pp.555-567
    • /
    • 2014
  • Biometric performance improvement is a challenging task. In this paper, a hierarchical strategy fusion based on multimodal biometric system is presented. This strategy relies on a combination of several biometric traits using a multi-level biometric fusion hierarchy. The multi-level biometric fusion includes a pre-classification fusion with optimal feature selection and a post-classification fusion that is based on the similarity of the maximum of matching scores. The proposed solution enhances biometric recognition performances based on suitable feature selection and reduction, such as principal component analysis (PCA) and linear discriminant analysis (LDA), as much as not all of the feature vectors components support the performance improvement degree.

Enhancing Accuracy Performance of Fuzzy Vault Non-Random Chaff Point Generator for Mobile Payment Authentication

  • Arrahmah, Annisa Istiqomah;Gondokaryono, Yudi Satria;Rhee, Kyung-Hyune
    • Journal of Multimedia Information System
    • /
    • v.3 no.2
    • /
    • pp.13-20
    • /
    • 2016
  • Biometric authentication for account-based mobile payment continues to gain attention because of improvements on sensors that can collect biometric information. We propose an enhanced method for mobile payment security based on biometric authentication. In this mobile payment system, the communication between the user and the relying party is based on public key infrastructure. This method secures both the key and the biometric template in the user side using fuzzy vault biometric cryptosystems, which is based on non-random chaff point generator. In this paper, we consider an important process for the common fuzzy vault system, that is, the feature extraction method. We evaluate various feature extraction methods to enhance the accurate performance of the system.

Secure Biometric Hashing by Random Fusion of Global and Local Features

  • Ou, Yang;Rhee, Kyung-Hyune
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.875-883
    • /
    • 2010
  • In this paper, we present a secure biometric hashing scheme for face recognition by random fusion of global and local features. The Fourier-Mellin transform and Radon transform are adopted respectively to form specialized representation of global and local features, due to their invariance to geometric operations. The final biometric hash is securely generated by random weighting sum of both feature sets. A fourfold key is involved in our algorithm to ensure the security and privacy of biometric templates. The proposed biometric hash can be revocable and replaced by using a new key. Moreover, the attacker cannot obtain any information about the original biometric template without knowing the secret key. The experimental results confirm that our scheme has a satisfactory accuracy performance in terms of EER.

A Method of Generating Changeable Face Template for Statistical Appearance-Based Face Recognition (통계적 형상 기반의 얼굴인식을 위한 가변얼굴템플릿 생성방법)

  • Lee, Chul-Han;Jung, Min-Yi;Kim, Jong-Sun;Choi, Jeung-Yoon;Kim, Jai-Hie
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.27-36
    • /
    • 2007
  • Changeable biometrics identify a person using transformed biometric data instead of original biometric data in order to enhance privacy and security in biometrics when biometric data is compromised. In this paper, a novel scheme which generates changeable face templates for statistical appearance-based face recognition is proposed. Two different original face feature vectors are extracted from two different appearance-based approaches, respectively, each original feature vector is normalized, and its elements are re-ordered. Finally a changeable face template is generated by weighted addition between two normalized and scrambled feature vectors. Since the two feature vectors are combined into one by a two to one mapping, the original two feature vectors are not easily recovered from the changeable face template even if the combining rule is known. Also, when we need to make new changeable face template for a person, we change the re-ordering rule for the person and make a new feature vector for the person. Therefore, the security and privacy in biometric system can be enhanced by using the proposed changeable face templates. In our experiments, we analyze the proposed method with respect to performance and security using an AR-face database.

A Study on A Biometric Bits Extraction Method of A Cancelable face Template based on A Helper Data (보조정보에 기반한 가변 얼굴템플릿의 이진화 방법의 연구)

  • Lee, Hyung-Gu;Kim, Jai-Hie
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.83-90
    • /
    • 2010
  • Cancelable biometrics is a robust and secure biometric recognition method using revocable biometric template in order to prevent possible compromisation of the original biometric data. In this paper, we present a new cancelable bits extraction method for the facial data. We use our previous cancelable feature template for the bits extraction. The adopted cancelable template is generated from two different original face feature vectors extracted from two different appearance-based approaches. Each element of feature vectors is re-ordered, and the scrambled features are added. With the added feature, biometric bits string is extracted using helper data based method. In this technique, helper data is generated using statistical property of the added feature vector, which can be easily replaced with straightforward revocation. Because, the helper data only utilizes partial information of the added feature, our proposed method is a more secure method than our previous one. The proposed method utilizes the helper data to reduce feature variance within the same individual and increase the distinctiveness of bit strings of different individuals for good recognition performance. For a security evaluation of our proposed method, a scenario in which the system is compromised by an adversary is also considered. In our experiments, we analyze the proposed method with respect to performance and security using the extended YALEB face database

A Study on Biometric Model for Information Security (정보보안을 위한 생체 인식 모델에 관한 연구)

  • Jun-Yeong Kim;Se-Hoon Jung;Chun-Bo Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.317-326
    • /
    • 2024
  • Biometric recognition is a technology that determines whether a person is identified by extracting information on a person's biometric and behavioral characteristics with a specific device. Cyber threats such as forgery, duplication, and hacking of biometric characteristics are increasing in the field of biometrics. In response, the security system is strengthened and complex, and it is becoming difficult for individuals to use. To this end, multiple biometric models are being studied. Existing studies have suggested feature fusion methods, but comparisons between feature fusion methods are insufficient. Therefore, in this paper, we compared and evaluated the fusion method of multiple biometric models using fingerprint, face, and iris images. VGG-16, ResNet-50, EfficientNet-B1, EfficientNet-B4, EfficientNet-B7, and Inception-v3 were used for feature extraction, and the fusion methods of 'Sensor-Level', 'Feature-Level', 'Score-Level', and 'Rank-Level' were compared and evaluated for feature fusion. As a result of the comparative evaluation, the EfficientNet-B7 model showed 98.51% accuracy and high stability in the 'Feature-Level' fusion method. However, because the EfficietnNet-B7 model is large in size, model lightweight studies are needed for biocharacteristic fusion.

Discriminative and Non-User Specific Binary Biometric Representation via Linearly-Separable SubCode Encoding-based Discretization

  • Lim, Meng-Hui;Teoh, Andrew Beng Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.2
    • /
    • pp.374-388
    • /
    • 2011
  • Biometric discretization is a process of transforming continuous biometric features of an identity into a binary bit string. This paper mainly focuses on improving the global discretization method - a discretization method that does not base on information specific to each user in bitstring extraction, which appears to be important in applications that prioritize strong security provision and strong privacy protection. In particular, we demonstrate how the actual performance of a global discretization could further be improved by embedding a global discriminative feature selection method and a Linearly Separable Subcode-based encoding technique. In addition, we examine a number of discriminative feature selection measures that can reliably be used for such discretization. Lastly, encouraging empirical results vindicate the feasibility of our approach.

PCA-CIA Ensemble-based Feature Extraction for Bio-Key Generation

  • Kim, Aeyoung;Wang, Changda;Seo, Seung-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2919-2937
    • /
    • 2020
  • Post-Quantum Cryptography (PQC) is rapidly developing as a stable and reliable quantum-resistant form of cryptography, throughout the industry. Similarly to existing cryptography, however, it does not prevent a third-party from using the secret key when third party obtains the secret key by deception, unauthorized sharing, or unauthorized proxying. The most effective alternative to preventing such illegal use is the utilization of biometrics during the generation of the secret key. In this paper, we propose a biometric-based secret key generation scheme for multivariate quadratic signature schemes, such as Rainbow. This prevents the secret key from being used by an unauthorized third party through biometric recognition. It also generates a shorter secret key by applying Principal Component Analysis (PCA)-based Confidence Interval Analysis (CIA) as a feature extraction method. This scheme's optimized implementation performed well at high speeds.

A Study on A Biometric Bits Extraction Method Using Subpattern-based PCA and A Helper Data (영역기반 주성분 분석 방법과 보조정보를 이용한 얼굴정보의 비트열 변환 방법)

  • Lee, Hyung-Gu;Jung, Ho-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.183-191
    • /
    • 2010
  • Unique and invariant biometric characteristics have been used for secure user authentication. Storing original biometric data is not acceptable due to privacy and security concerns of biometric technology. In order to enhance the security of the biometric data, the cancelable biometrics was introduced. Using revocable and non-invertible transformation, the cancelable biometrics can provide a way of more secure biometric authentication. In this paper, we present a new cancelable bits extraction method for the facial data. For the feature extraction, the Subpattern-based Principle Component Analysis (PCA) is adopted. The Subpattern-based PCA divides a whole image into a set of partitioned subpatterns and extracts principle components from each subpattern area. The feature extracted by using Subpattern-based PCA is discretized with a helper data based method. The elements of the obtained bits are evaluated and ordered according to a measure based on the fisher criterion. Finally, the most discriminative bits are chosen as the biometric bits string and used for authentication of each identity. Even if the generated bits string is compromised, new bits string can be generated simply by changing the helper data. Because, the helper data utilizes partial information of the feature, the proposed method does not reveal privacy sensitive biometric information of the user. For a security evaluation of the proposed method, a scenario in which the helper is compromised by an adversary is also considered.

Hand Biometric Information Recognition System of Mobile Phone Image for Mobile Security (모바일 보안을 위한 모바일 폰 영상의 손 생체 정보 인식 시스템)

  • Hong, Kyungho;Jung, Eunhwa
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.319-326
    • /
    • 2014
  • According to the increasing mobile security users who have experienced authentication failure by forgetting passwords, user names, or a response to a knowledge-based question have preference for biological information such as hand geometry, fingerprints, voice in personal identification and authentication. Therefore biometric verification of personal identification and authentication for mobile security provides assurance to both the customer and the seller in the internet. Our study focuses on human hand biometric information recognition system for personal identification and personal Authentication, including its shape, palm features and the lengths and widths of the fingers taken from mobile phone photographs such as iPhone4 and galaxy s2. Our hand biometric information recognition system consists of six steps processing: image acquisition, preprocessing, removing noises, extracting standard hand feature extraction, individual feature pattern extraction, hand biometric information recognition for personal identification and authentication from input images. The validity of the proposed system from mobile phone image is demonstrated through 93.5% of the sucessful recognition rate for 250 experimental data of hand shape images and palm information images from 50 subjects.