• 제목/요약/키워드: biomedical monitoring

검색결과 454건 처리시간 0.025초

Improvement of Dynamic Respiration Monitoring Through Sensor Fusion of Accelerometer and Gyro-sensor

  • Yoon, Ja-Woong;Noh, Yeon-Sik;Kwon, Yi-Suk;Kim, Won-Ki;Yoon, Hyung-Ro
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.334-343
    • /
    • 2014
  • In this paper, we suggest a method to improve the fusion of an accelerometer and gyro sensor by using a Kalman filter to produce a more high-quality respiration signal to supplement the weakness of using a single accelerometer. To evaluate our proposed algorithm's performance, we developed a chest belt-type module. We performed experiments consisting of aerobic exercise and muscular exercises with 10 subjects. We compared the derived respiration signal from the accelerometer with that from our algorithm using the standard respiration signal from the piezoelectric sensor in the time and frequency domains during the aerobic and muscular exercises. We also analyzed the time delay to verify the synchronization between the output and standard signals. We confirmed that our algorithm improved the respiratory rate's detection accuracy by 4.6% and 9.54% for the treadmill and leg press, respectively, which are dynamic. We also confirmed a small time delay of about 0.638 s on average. We determined that real-time monitoring of the respiration signal is possible. In conclusion, our suggested algorithm can acquire a more high-quality respiration signal in a dynamic exercise environment away from a limited static environment to provide safer and more effective exercises and improve exercise sustainability.

임피던스 법을 이용한 두피 상태 추정에 관한 연구 (A Study for Estimation of Scalp Condition by Impedance)

  • 심명헌;최한윤;정인철;김기원;윤형로
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.471-472
    • /
    • 2007
  • The scalp is skin tissue for skull-protection and roots for hair growth. Therefore continuous monitoring of scalp condition is essential for hair management. However, the equipments for existent are inconvenient to use because of focus tremor and external factors(Hair Gel, Wax, accessories and so on). Furthermore there is a problem to use an expensive optical devices like CCD (Charge Coupled Device) camera or lens of 200 - 1000 magnification. It causes a difficulty of using those equipment. We design the special electrode(length 5.65mm, diameter 0.8mm of needle shape) and the impedance system(1kHz, 78uA). Tn this paper, we can measure scalp impedance with our system. Moreover, we find the possibility of classifying scalp condition with measured impedance values. For the classification of scalp condition, we used ARAMO-TS as an imaging system. In conclusion, the problem of existent devices could be improved using these method. It also has a benefit of continuous monitoring of scalp condition.

  • PDF

Cell Surface Antigen Display for Neuronal Differentiation-Specific Tracking

  • Kim, Sang Chul;Lee, Eun-Hye;Yu, Ji Hea;Kim, Sang-Mi;Nam, Bae-Geun;Chung, Hee Yong;Kim, Yeon-Soo;Cho, Sung-Rae;Park, Chang-Hwan
    • Biomolecules & Therapeutics
    • /
    • 제27권1호
    • /
    • pp.78-84
    • /
    • 2019
  • Cell therapeutic agents for treating degenerative brain diseases using neural stem cells are actively being developed. However, few systems have been developed to monitor in real time whether the transplanted neural stem cells are actually differentiated into neurons. Therefore, it is necessary to develop a technology capable of specifically monitoring neuronal differentiation in vivo. In this study, we established a system that expresses cell membrane-targeting red fluorescent protein under control of the Synapsin promoter in order to specifically monitor differentiation from neural stem cells into neurons. In order to overcome the weak expression level of the tissue-specific promoter system, the partial 5' UTR sequence of Creb was added for efficient expression of the cell surface-specific antigen. This system was able to track functional neuronal differentiation of neural stem cells transplanted in vivo, which will help improve stem cell therapies.

The Effect of Extracellular Glutamate Release on Repetitive Transient Ischemic Injury in Global Ischemia Model

  • Lee, Gi-Ja;Choi, Seok-Keun;Eo, Yun-Hye;Kang, Sung-Wook;Choi, Sam-Jin;Park, Jeong-Hoon;Lim, Ji-Eun;Hong, Kyung-Won;Jin, Hyun-Seok;Oh, Berm-Seok;Park, Hun-Kuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권1호
    • /
    • pp.23-26
    • /
    • 2009
  • During operations, neurosurgeons usually perform multiple temporary occlusions of parental artery, possibly resulting in the neuronal damage. It is generally thought that neuronal damage by cerebral ischemia is associated with extracellular concentrations of the excitatory amino acids. In this study, we measured the dynamics of extracellular glutamate release in 11 vessel occlusion(VO) model to compare between single occlusion and repeated transient occlusions within short interval. Changes in cerebral blood flow were monitored by laser-Doppler flowmetry simultaneously with cortical glutamate level measured by amperometric biosensor. From real time monitoring of glutamate release in 11 VO model, the change of extracellular glutamate level in repeated transient occlusion group was smaller than that of single occlusion group, and the onset time of glutamate release in the second ischemic episode of repeated occlusion group was delayed compared to the first ischemic episode which was similar to that of single 10 min ischemic episode. These results suggested that repeated transient occlusion induces less glutamate release from neuronal cell than single occlusion, and the delayed onset time of glutamate release is attributed to endogeneous protective mechanism of ischemic tolerance.

Detection of Arrhythmias by Holter Monitoring and Use of Wearable Electrocardiography Devices Holter and wearable devices for arrhythmia detection

  • Ji Yeon Chang;Jae Kyung Kim
    • International Journal of Advanced Culture Technology
    • /
    • 제11권2호
    • /
    • pp.310-314
    • /
    • 2023
  • In this paper, we show that the limitations of Holter monitoring and Wearable Electrocardiogarphy Devices and their arrhythmia detection. Sudden death caused by cardiovascular disease, often referred to as the "silent killer" due to its unpredictable nature, is a major health concern. Electrocardiography (ECG) is a basic diagnostic tool for detecting heart disease, but its limitations make it difficult to detect arrhythmia, a significant indicator of an irregular heart state. To address this limitation, a long-term continuous ECG recording device has been developed, Holter ECG device and wearable device. A significant number of studies have focused on the differences between Holter monitoring and wearable devices. The Holter tests were useful for detecting regularly occurring arrhythmias, whereas wearable patches were better at detecting random and infrequent arrhythmias. Wearable patches were effective in detecting episodes of arrhythmia and myocardial ischemia. Despite the concern, wearable devices had less signal loss than Holter monitoring and patients also preferred wearable devices over Holter monitoring due to convenience. These results could mean that the wearable devices can perfectly replace the Holter test.

의복착용형 무선 호흡모니터 시스템 (Wearable wireless respiratory monitoring system)

  • 이인광;김성식;장종찬;김군진;김경아;이태수;차은종
    • 센서학회지
    • /
    • 제17권2호
    • /
    • pp.133-142
    • /
    • 2008
  • Respiration is induced by muscular contraction of the chest and abdomen, resulting in the abdominal volume change. Thus, continuous measurement of the abdominal dimension enables to monitor breathing activity. Conductive rubber cord has been previously introduced and tested to develop wearable application for respiratory measurements. The present study implemented wireless wearable respiratory monitoring system with the conductive rubber cord in the patient's pants. Signal extraction circuitry was developed to obtain the abdominal circumference changes reflecting the lung volume variation caused by respiratory activity. Wireless transmission was followed based on the zigbee communication protocol in a size of 65mm${\times}$105mm easily put in pocket. Successful wireless monitoring of respiration was performed in that breathing frequency was accurately estimated as well as different breathing patterns were easily recognized from the abdominal signal. $CO_2$ inhalation experiment was additionally performed in purpose of quantitative estimation of tidal volume. Air mixed with $0{\sim}5%\;CO_2$was inhaled by 4 normal males and the respiratory air flow rate, abdominal dimension change, and end tidal $CO_2$ concentration were simultaneously measured in steady state. $CO_2$ inhalation increased the tidal volume in normal physiological state with a correlation coefficient of 0.90 between the tidal volume and the end tidal $CO_2$ concentration. The tidal volume estimated from the abdominal signal linearly correlated with the accurate tidal volume measured by pneumotachometer with a correlation coefficient of 0.88 with mean relative error of approximately 8%. Therefore, the tidal volume was accurately estimated by measuring the abdominal dimension change.

2D 영상마커 추적 기반 시린지펌프 투약속도 실시간 감시 기술 개발 (Real-time Monitoring of the Actual Infusion Rate of Syringe Pump Using 2D Image Marker Tracking)

  • 김건호;황영준;김민재;남경원
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권1호
    • /
    • pp.92-98
    • /
    • 2023
  • Purpose: To propose a new infusion rate monitoring technique based on the 2D image marker tacking to improve patient safety by preventing syringe pump-related medication accidents due to decreased infusion rate control accuracy. Materials and Methods: The infusion rate of the syringe pump and drug residue in the pump-equipped syringe were monitored in real time by tracking the movement of the 2D image markers attached to the syringe pump. Results: The error rate between the set and the estimated infusion rates was 1.03, 0.66, 1.95, 0.23, and 1.05% when the infusion rate setting was 10, 20, 30, 40, and 50 mL/H, respectively. In addition, the error rate between the actual and the estimated drug residues was 1.04, 0.47, 0.60, 3.66, and 0.00% when the infusion rate setting was 10, 20, 30, 40, and 50 mL/H, respectively. Conclusion: Experimental results demonstrated that the proposed technique can increase the efficiency of the safety management system for seriously ill inpatients by decreasing a possibility of syringe pump-related medication accidents in hospitals.

맥동성분의 적분비를 이용한 펄스 옥시메터의 산소포화도 계산모델 설계 및 분석 (Architecture & Analysis of $SpO_2$ Computing Model Using Integral Ratio of Pulsating Components)

  • 김윤영;김동철;이윤선
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.267-270
    • /
    • 1997
  • Oxygen saturation is an important parameter in clinical fields; fetal monitoring, apnea, emergency medicine etc. Because of monitoring patients continuously, pulse oximeter that measures oxigen saturation non-invasively is regarded attentively. But, though research about accuracy of signal extraction has been developed, it actually plays a supplementary part in hospital for not trusting the principle of measurement by clinicians. In this paper focusing on these things, first we suggested simple mathematical modelling on separating do components, ac components andnoise components in optical signal transmitted from fingertip or earlobe, and then we considered oxygen saturation computing algorithm using integral ratio of pulsating components. Last, we analyzed its effect by comparing received data.

  • PDF

Application of a Textile-based Inductive Sensor for the Vital Sign Monitoring

  • Gi, Sun Ok;Lee, Young Jae;Koo, Hye Ran;Khang, Seonah;Kim, Kyung-Nam;Kang, Seung-Jin;Lee, Joo Hyeon;Lee, Jeong-Whan
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.364-371
    • /
    • 2015
  • In this study, we developed a feasible structure of a textile-based inductive sensor using a machine embroidery method, and applied it to a non-contact type vital sign sensing device based on the principle of magnetic-induced conductivity. The mechanical heart activity signals acquired through the inductive sensor embroidered with conductive textile on fabric were compared with the Lead II ECG signals and with respiration signals, which were simultaneously measured in every case with five subjects. The analysis result showed that the locations of the R-peak in the ECG signal were highly associated with sharp peaks in the signals obtained through the textile-based inductive sensor (r=0.9681). Based on the results, we determined the feasibility of the developed textile-based inductive sensor as a measurement device for the heart rate and respiration characteristics.