• Title/Summary/Keyword: biomass policy

Search Result 90, Processing Time 0.027 seconds

Evaluating the TAC Policy in the Sandfish Stock Rebuilding Plan (도루묵 수산자원회복계획에서의 TAC정책 평가)

  • Kim, Do-Hoon
    • The Journal of Fisheries Business Administration
    • /
    • v.46 no.1
    • /
    • pp.29-39
    • /
    • 2015
  • This study aimed to evaluate the TAC policy and to examine the effective annual TAC quota in the sandfish stock rebuilding plan using a bioeconomic modelling method. In the analysis, first, a sandfish bioeconomic model was developed by combining a sandfish stock population model and economic models by fishery and second, achieving stock rebuilding targets and changes of fishing revenues by the level of annual TAC quota were examined. Model results indicated that the TAC 1,500ton policy would have the greatest impact on the increase of sandfish stock biomass comparing to the status quo and other TAC policies. In addition, it was evaluated that the total fishing revenues of coastal gillnet and danish seine fisheries could be increased the most in the TAC 2,500ton policy. In both cases of TAC 3,500ton and 4,000ton, the fishing revenues of both fisheries were inversely reduced due to the decrease of catch by coastal gillnet and the decline of market prices by danish seine's excessive catch. Furthermore, they would have a negative impact on sandfish stock biomass.

Economic analysis of biomass torrefaction plants integrated with corn ethanol plants and coal-fired power plants

  • Tiffany, Douglas G.;Lee, Won Fy;Morey, Vance;Kaliyan, Nalladurai
    • Advances in Energy Research
    • /
    • v.1 no.2
    • /
    • pp.127-146
    • /
    • 2013
  • Torrefaction technologies convert assorted biomass feedstocks into energy-concentrated, carbon neutral fuel that is economically transported and easily ground for blending with fossil coals at numerous power plants around the world without needs to retrofit. Utilization of torrefied biomass in conventional electric generating units may be an increasingly attractive alternative for electricity generation as aging power plants in the world need to be upgraded or improved. This paper examines the economic feasibility of torrefaction in different scenarios by modeling torrefaction plants producing 136,078 t/year (150,000 ton/year) biocoal from wood and corn stover. The utilization of biocoal blends in existing coal-fired power plants is modeled to determine the demand for this fuel in the context of emerging policies regulating emissions from coal in the U.S. setting. Opportunities to co-locate torrefaction facilities adjacent to corn ethanol plants and coal-fired power plants are explored as means to improve economics for collaborating businesses. Life cycle analysis was conducted in parallel to this economic study and was used to determine environmental impacts of converting biomass to biocoal for blending in coal-fired power plants as well as the use of substantial flows of off-gasses produced in the torrefaction process. Sensitivity analysis of the financial rates of return of the different businesses has been performed to measure impacts of different factors, whether input prices, output prices, or policy measures that render costs or rewards for the businesses.

Forest Biomass Utilization for Energy Based on Scientifically Grounded and Orthodox (산림바이오매스에너지에 관한 과학적 근거에 따른 통설적 접근)

  • Seung-Rok Lee;Gyu-Seong Han
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.145-174
    • /
    • 2024
  • Addressing climate change necessitates evidence-based policies grounded in science. The use of forest biomass for energy production is based on a broad scientific consensus at the international level. However, some environmental groups in South Korea are opposing this system of energy production. Through this study, the authors aim to reduce unnecessary confusion and foster an atmosphere conducive to meaningful evidence-based policies. We have classified the issue into eight categories: biological carbon cycle, carbon debt, nature-based solutions, air emissions, cascading principles and sustainability certification, forest environmental impacts, climate change litigation, and the behavior of environmental groups and public perception. Consequently, the following key points were derived: (1) the actions of some environmental groups seem to follow a similar pattern to denialist behavior that denies climate change and climate science; (2) the quality of evidence for campaigns that oppose the use of forest biomass for energy production is low, with a tendency to overgeneralize information, high uncertainty, and difficulty in finding new claims.; (3) most of the public believes that forest biomass energy is necessary, and the governments of major countries are aware of its importance. Significantly, Forest biomass for energy is based on an overwhelming level of scientific consensus recognized internationally.

A Bioeconomic Analysis on the Effectiveness of Total Allowable Catch(TAC) Policy under the Rebuilding Plan (자원회복계획 하에서의 총허용어획량(TAC) 어업정책 효과에 관한 생물경제학적 분석 -미국 멕시코만의 Yellowedge Grouper 어업을 사례로-)

  • Kim, Dohoon
    • Environmental and Resource Economics Review
    • /
    • v.12 no.4
    • /
    • pp.663-686
    • /
    • 2003
  • This study is aimed at analyzing the effectiveness of TAC policy using a bioeconomic model. A surplus-production model is used as a population dynamic model, from which the yellowedge grouper is estimated to be overfished. As a result, a 10-year rebuilding plan using the TAC policy is established. According to the result of model, under the well-enforced system, the target stock biomass is achieved during the rebuilding period. Especially, in order to accomplish the target stock biomass, the annual quota should be allocated much less than 342 tons that NMFS recommended. The NPV over a 25-year under the TAC policy Is predicted to be less than under the status quo. The economic gains under the variable-catch TAC policy is less than under the constant-catch TAC policy as the interest rate decreases, while the NPV under the constant-catch is greater than under the variable-catch TAC policy when the interest rate is high.

  • PDF

Assessing Stock Biomass and Analyzing Management Effects Regarding the Black Scraper (Thamnaconus modestus) Using Bayesian State-space Model (Bayesian state-space 모델을 이용한 말쥐치 자원평가 및 관리효과 분석)

  • Choi, Min-Je;Kim, Do-Hoon;Lee, Hae-Won;Seo, Young-Il;Lee, Sung-Il
    • Ocean and Polar Research
    • /
    • v.42 no.1
    • /
    • pp.63-76
    • /
    • 2020
  • This study sought to assess the stock status and analyze the management effects with regard to the Black scraper, which is one of the more commercially important species in Korea. The catch amounts of Black scraper have significantly decreased since 1991. In this analysis, a Bayesian state-space model was utilized to assess the biomass of the Black scraper given the limited data. Model results showed that MSY and BMSY of Black scraper were estimated to be 26,587 tons and 365,200 tons, respectively. In addition, the current biomass level of the Black scraper was assessed to be only 2.1% (7,549 tons) of BMSY. For this reason, the effects of a moratorium policy on the Black scraper were evaluated. The results showed that if such a moratorium policy was implemented, it would take at least 18-40 years to restore the biomass level of the Black scraper to BMSY depending upon its growth rates.

Economic Feasibility of Forest Biomass Thermal Energy Facility Using Real Option Approach (실물옵션법을 이용한 산림 바이오매스 열공급 시설의 투자 분석)

  • An, Hyunjin;Min, Kyungtaek
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.3
    • /
    • pp.453-461
    • /
    • 2021
  • The energy use of forest biomass is crucial to deal with climate change and achieve the carbon-neutral goal. This study aims to analyze the economic feasibility of forest biomass thermal energy facilities and calculate the optimal subsidy level of heat supply to ensure continued operation of the facilities. To achieve this aim, the net present value approach (NPV) and call option price model are adopted considering wood chip price volatilities. The Forest Energy Self-Sufficient Village Project financed by Korea Forest Service is considered as the research case study. In our analysis, when 50% of the initial investment is given to the subsidies and RECs are applied to only power generation, NPV and IRR are both negative and the investment value using the real option model is also zero. We concluded that some heat subsidies should be acknowledged to keep the facilities operating. Besides, the simulation results reveal reliable economic values when the heating subsidy is priced at KRW 0.0248 per kcal.

Optimal replacement of biomass for maximizing gas production

  • Lee, Hwa-Ki
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.10 no.2
    • /
    • pp.54-64
    • /
    • 1985
  • Biomass conversion processes have the potential for satisfying approximately 25% of the national demand for methane gas. At the current time very littel analytical work has been done to optimally design and operate the production facilities associated with these processes. This study was motivated by the high cost of these proposed systems. The biomass in storage decays (exponentially) with time while the batch methane production rate decreases (exponentially) over time. The basic problem is to determine the optimal residence times for batches in the anaerobic degester to maximize total production over a fixed planning horizon. The analysis characteries the form of the optimal policy and presents efficient algorithm for obtaining this solution.

  • PDF

Introduction of the New Evaluation Criteria in the Forest Sector of Environmental Conservation Value Map Using LiDAR (LiDAR를 활용한 국토환경성평가지도 산림부문 신규 평가항목의 도입 가능성 평가)

  • Jeon, Seong-Woo;Hong, Hyun-Jung;Lee, Chong-Soo;Lee, Woo-Kyun;Sung, Hyun-Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.5
    • /
    • pp.20-30
    • /
    • 2007
  • Environmental Conservation Value Assessment Map (ECVAM) is the class map to divide the national land into conservation areas and development areas based on legal and ecological assessment criteria. It contributes to enhancements of the efficiency and the scientificity when framing a policy in various fields including the environment. However, it is impossible to understand the multiphase vegetation structure as data on judging the national forest class in ECVAM are restricted to areal information of Ecological Nature Status, Degree of Green Naturality and Forest Map. This point drops the reliability of ECVAM. Therefore we constructed vegetation information using LiDAR (Light Detection And Raging) technology. We generated Biomass Class Maps as final results of this study, to introduce the new forest assessment criterion in ECVAM that alternates or makes up for existing forest assessment criteria. And then, we compared these with Forest Map and Landsat TM NDVI image. As a result, biomass classes are generally higher than stand age classes and DBH classes of Vegetation Map, and lower than NDVI of Landsat TM image because of the difference of time on data construction. However distributions between these classes are mostly similar. Therefore we estimates that it is possible to apply the biomass item to the new forest assessment criterion of ECVAM. The introduction of the biomass in ECVAM makes it useful to detect the vegetation succession, to adjust the class of the changed zone since the production of Vegetation Map and to rectify the class error of Vegetation Map because variations on tree heights, forest area, gaps between trees, vegetation vitality and so on are acquired as interim findings in process of computing biomass.

A Bioeconomic Analysis of the Management Policies for the United States Gulf of Mexico Red Grouper Fishery

  • Kim, Do-Hoon
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.483-491
    • /
    • 2003
  • Since the red grouper was declared overfished, the Gulf of Mexico Fishery Management Council must prepare a rebuilding plan considering the following alternative management policies: a Total Allowable Catch (TAC), 5-month season closure, 1800-pound trip limit, and a 50-fathom longline boundary. This study was aimed at evaluating the effects of proposed policies for rebuilding the red grouper stock in a 10-year period by developing a bioeconomic model. Under the assumption that the recreation sector was held to its share of TAC (24% of the total quota), the target stock biomass goal was attained in all policies. The NPV was the largest in the 5-month season closure policy if the output price did not fall. There were distributional effects on the different components of the fleets in the 1800-pound trip limit and the 50-fathom longline boundary policy.

Economic Feasibility of Using Forest Biomass as a Local Energy Source (산림바이오매스의 지역 에너지 이용의 경제성 분석)

  • Min, Kyungtaek;An, Hyunjin;Byun, Seungyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.177-185
    • /
    • 2022
  • In this study, the economic feasibility of a local energy facility that uses forest biomass as an energy source was assessed. We analyzed profitability using data from the Forest Energy Self-sufficient Village Project financed by the Korea Forest Service. The energy facility has a cogeneration generator and wood chip boiler. Wood chip, which has lower heat value and is cheaper than wood pellets, is used as fuel. Revenue comes from the sale of electricity, heat, and renewable energy certificates. Additionally, we considered the sale of carbon credits as substitutes for fossil fuels. The expenditure consists of fuel costs and fixed costs, and the initial investment is treated as a sunk cost. Under the condition of a 55% operation rate and wood chip price of 95,000 KRW per ton, the annual net revenue is positive. Crucial factors for managing the facility sustainably are operation rate and fuel cost. A simulation in which two factors were changed showed that the annual net revenue is negative with a 50% operation rate and 100,000 KRW per ton of wood chip price. To improve net revenue, an increase in the operation rate or a decrease in the wood chip price is required. Additionally, selling carbon credits will make the operation of the facility more profitable. Furthermore, the payment required to procure wood chips could contribute to the rural economy. To foster the use of forest biomass for energy, the price for heat supplied from renewable energy sources should be subsidized.