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Maximizing Gas Production
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Abstract

Biomass conversion processes have the potential for satisfying approximately 25% of the
national demand for methane gas. At the current time very little analytical work has been done
to optimally design and operate the production facilities associated with these processes. This
study was motivated by the high cost of these proposed systems. The biomass in storage decays
(exponentially) with time while the batch methane production rate decreases (exponentially) over
time. The basic problem is to determine the optimal residence times for batches in the anaero-
bic digester to maximize total production over a fixed planning horizon. The analysis characteriz-
es the form of the optimal policy and presents efficient algorithm for obtaining this solution.

1. Introduction

In anticipation of future world energy and food shortages, scientists have been studying
methods for producing energy (in this analysis methane gas) from the residual biomass from
food producing crops. For example, the grain of sorghum is used as cattle feed while the stalks
can be used as a feedstock in methane producing anaerobic conversion systems. Of course,
crops may be grown solely for conversion purposes.

Conservative estimates indicate that approximately one-fourth of the national annual demand
could be met by biomass to methane conversion systems (Isaacson et al. 1984). Recent research
efforts have been orientated towards anaerobic digestion methods for large scale blomass to
methane production systems. The Gas Research Institute has funded several large research
projects with emphasis on biomass from such sources as kelp, sugarcane, water hyacinth, napier
grass and sorghum as feedstocks (Mishoe ef al. 1983 and Sweeten ef al. 1984). For large scale
production systems, biomass storage and conversion will most likely occur at the production
facility. An anaerobic conversion procedure which has received considerable attention in these
large reseaich projects relies on a batch production process (Sofer and Zaborsky 1981). With
this method, the digester is filled with biomass, an inoculum such as swine manure is added,
and the digester sealed and left to produce methane by microbial action. The rate of gas pro-
duction from a digester declines over time as the structural and nonstructural carbohydrates in
the biomass are broken down and converted to methane.
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Because of the slow rate of methane production, the fixed capacity of the digesters, and the
single harvest of the agricultural crop providing the biomass, |biomass must be stored during
the conversion planning horizon. Since stored biomass degrades significantly over time, the batch
timing replacement policy can have a major effect on the total gas produced from a fixed
quantity of biomass. Storage decay is not as critical for systems that can be continuously
harvestsd throughout the year such as water hyacinth. However, for agricultural crops such as
sorghum which have a short term harvest period, the decay of stored biomass quality over time
is an important factor affecting total gas proudction.

The major shortcoming of biomass to methane coversion systems at the current time is the cost
per unit of gas produced. To become competitive with current petroleurmn methane sources, consider-
able research directed towards improving the total methane production system is needed. Thus,
it is imperative that optimal production designs and operating procedures be obtained for these
systems. In this paper, we derive the optimal timing of batch replacements for a system where
the total biomass is available at the beginning of the production period. A recursive equation
for the optimal batch timings for a fixed number of fixed sized batches is developed.

2. Problem Description

The kinetics of a digestion process are critical in determining the rate of gas production per
volume of digester. A description of digestion kinetics was obtained using chemical reaction
engineering theory by Chynoweth ef al (1981). In summary, the rate of gas production for the
batch process was found to decrease with time and is proportional to ee™** where t is the time
in the batch digester, and « and 8 are biomass-gas conversion coefficients which depend upon
the biomass, innoculum and digester. The actual production rate obtained from a batch of size
b is proportional to & ; that is, a batch of size b produces methane at rate bae *. The unit
cumulative methane production for a fresh batch of biomass that has been in the digester for
time £ is given by the function

gt)=(a/B) (1—¢™%),
and the total gas produced from a batch of size b is bg(f). Hashimoto ef al. (1981) and Hashi-
moto (1983) propose a rectangular hyperbola form for the cumulative methane production from
anaerobic digestion processes. Their experimental results essentially support the above exponenti-
al” form.

Biomass, once it has been harvested, decays in quality as a function of the time since har-
vest, and this decay rate depends upon the storage process. This rate is well approximated by
the exponential function

ny=e"
where ¢ is the length of time since harvest and 7 is a parameter depending upon the storage
prosess. The analysis that follows is based upon the additional assumption that £is greater than
7, which insures that the decay occurs at a slower rate than gas production. Otherwise, a
storage-batch production system would have no merit.

The production and decay components interact by decreasing the quality of subsequent
batches loaded into the digester. The first batch will have a quality level of 1 and the gas



produced during the residence time #1 is thus bg(f1). The second batch, however, will have
decayed in storage to a quality level 4(¢1) while the first batch is being processed. Thus, the
production obtained by the second batch processing time ¢2 will be bh(f1)g(t2). The third batch
will produce the gas quantity bk(f1+£2)g(¢s), etc. The basic decision variables then for the pro-
duction process are the digester residence time f1. Figure 1 illustrates the general behavior of
the gas production system over the planning horizon [0, T].

This paper addresses one problem related to the residence times. In the proplem, it is assum-
ed that a digester has already been designed to operate with a fixed capacity, ¢, using a given
biomass supply, s. Furthermore the number of batches, n(=s/¢), is assumed to be an integer.
The setting of the system parameters ¢, b, #, and s are design considerations based on the
relative costs associated with the building, maintenance, and operation of the production and
storage facilities and the cost of biomass. These considerations are beyond the scope of this
particular study and are assumed to be fixed parameters. The problem is to determine the
length of the scheduling interval for each of the # batches. The solution of this problem pro-
vides the information necessary to operate the digester under design conditions.
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Fig. 1: Ilustration of the combined inventory decay and batch production processes. The
shaded region represents the production from the third batch. The case illustrated is for a four
batch system with « = 1.



3. Analysis of the Design Problem

Assume that the digester has been designed and built with a fixed capacity, ¢ that a supply
s (available at time #=0) is divided into % equal batches and that the » batches must be pro-
cessed in time 7 (days). The problem is to determine the length of each of the n scheduling
intervals so as to maximize the total gas production over 7. Mathematically, the problem is to
select the vector t=(f1, f2,..., tn) s0 as to

maximize U(¢, n)=g(t1) + h(t1) glte) + - +h{t1 + = +ta-1) g(tn)
subject to 1+ttt ta=T,
t:i>0, for j=1,-, n.

Then since total gas production is equal to the batch capacity ¢ times {J({, »), solving problem
(PD) will also maximize the total methane production over [0, T}

The solution to (P1) is given Theorem 1 below and is derived by solving the Kuhn-Tucker
necessary conditions.

The statement of the optimal solution to (P1) requires a recursive procedure based upon the
n—fold composition of a function with itself. Let f be a real valued function and define /™
(x) as follows :

O (x)=x,

O (x) =Afx),

(=AY (x)), for n=2.
Of course, the above definition is valid only if the range and domain of the function f are
consistent. Now, define the real valued function ¢(x) by

gx)=1—w+wxV*, for 0= x =< 1,

where w = (B8 — 7)/£. This function along with the composition operator are central to the
statement of the optimal policy. The following theorem and corollaries establish the solution to
(P1). The proofs are provided in the Appendix.

Theorem 1. For each positive integer » and positive 7T, there is a unique positive real
number A* and positive vector +* depending upon A* such that

2tr=T
tr=n g™ (x")]/(r—8, for i=1,2,..., 1.1
£ >0, for all 7, (1.2
where x*=(2%e'T)/a 1.3)

To see how the solution works, suppose #=3. Then given the value of x* we can construct
the batch residence timing solution as follows :
t3=[in 2*] /(r—8),
ti=[in qx®]1/(r—B,
t1=lin qlgx®)]1/(r—B.

The solution ¢* is easily determind once the value of x* (and hence A*) has been specified.



Unfortunately, A* must be obtained using a numerical procedure because no closed form sclution

exists. However, Lemma 1 provides a finite interval of uncertainty known to contain A* so that
any one of a variety of one-dimensional search procedures (e. g grid search or binary search)

will efficiently find A* Essentially given a guess for A, equations (1.1)—(1.3) aré used to find

the corresponding f; if 2 #;= T, the procedure terminates. Otherwise, A is increased (or decreas-
ed) and ¢ is recomputed.

Lemma 1. For any positive integer # and positive 7T,
ae T < A* < ae "7,

Two interesting consequences of Theorem 1 are the following corollaries. These results state
that the scheduling periods (batch residence times) are strictly increasing and the batch  pro-
duction quantities are strictly decreasing in value.

Corollary 1. For each positive integer # and positive 7, the optimal scheduling vector
satisfies

0<tl <t <..<i¢r;
that is, successive batches remain in the digester for increasing lengths of time.

Corollary 2. TFor each positive integer # and positive 7, the total gas produced from
batch 1 is greater than the amount produced by batch 2, and in general, the amount of gas
produced by batch j is greater than the amount produced by batch j+1, for all ;.

The result in Corollary 2 is nonintuitive because it states that earlier batches produce more
gas than later batches having shorter residence times. This phenomenon is a consequence of
the fact that the stored biomass decays over time so that longer time intervals are required to
produce comparable quantities of methane. However, it is not optimal to manage batches to
obtain equivalent amounts of methane, nor to use equal residence times.

Algorithm 1. et » be a positive integer, 7 be a positive real number, and assume that
each of the # batches will fill the digester to capacity. The solution to (Pl) is obtained by the
following procedure :

Step 0:Set A=ae~#7 and set A= @7 (the bounds provided by Lemma 1),
Select a termination tolerance, € < L.
Step 1: Set A=(X+4)/2.
Step 2: Set x=4e"T/a
Step 3: Compute :
ti=ln ¢ (0 (r=8. j=1,2, ..., n
Step 4 : Compute SUM = Z¢. If | 7—SUM| < € then stop;
otherwise, if SUM > T then set A = A and return to Step 1;
or if SUM < 7 then set A=A and return to Step 1.



Example 1. Consider a system with digester capacity of 1000 tons of biomass and with pro-
duction and decay paramenter values of @=10, #=0.07 and y=0.0006. We wish to schedule
a biomass supply of 3000 tons using three batches over a 90 day time period (7=90). Equation
(1) vields the optimal timings given that the Lagrange multiplier A is known. Algorithm 1 deter-
mines A at ¢ by searching over the bounded range of A given in Step 0. For illustration pur-
poses, Table 1 lists the solution value for the system for various values of A €[0.018, 9.474]
with a grid step of 0.473. Also. included in Table 1 and denoted by bold type are entries for
A =1.131. This value was obtained by a binary search. The associated computations for #*
given A*=1.131 are :

7" (x)=(.131/10) exp{ (0.0006)90} =0.1194,

g’ P (x) =q{x)=10/0. 07+(1—0. 0006/0. 07) (1.19) exp{0. 07/0.0694} =0. 125,
g°® (x)=q(0. 125)=0. 130,

13 =1n (0.1194)/(—0. 694)=30. 62,

t5=1n (0.125)/ (—0.694)=29.99, and

H =1 (0.130)/(—0. 694)=29. 39.

Il

Notice that #f + ¢ + £ =90. The total gas produced is 369, 457mn°.

5. Conclusions

This paper has introduced a new type of perishable inventory and production problem, corre-
sponding to the production of methane gas by anaerobic conversion of biomass. One optimiza-
tion problem was formulated and analyzed. In this case the optimal policy was characterized
and a simple numerical algorithm was provided. This analysis has demonstrated that not only
can a complex applications problem be solved using analytic methods but in adition the solution
can be shown to have remarkably simple structure. The results are novel, and hopefully they will
stimulate more research in this area as well as contribute to the anaerobic conversion methodo-

logy.

Table 1%

Example Results of Algorithm 1 for Various Values of the Lagrange Multiplier 4 for a System with s
=3000, #=3, T=90, ¢=1000, «=10, £=0.07 and y=0. 0006.

Batch Times (days)

A h t2 t3 2t TOTAL GAS(m?®)
0.018 57.5 65. 8 90.0 213.3 409, 365. 10
0.491 39.3 40.9 42.6 122.8 396, 548. 30
0. 964 31.4 32.1 32.9 96. 5 376, 210. 60
1.131 29. 39 29. 99 30. 63 90.0 369, 457. 00
1.437 26.3 26.7 27.2 80.2 356, 885. 40



1.910 22.5 22.8 23.1 68. 4 337, 045. 10
2.382 19.5 19.7 19.9 59.1 316, 873. 50
2. 855 17.0 17.1 17.3 51.4 296, 464. 30
3.328 14.9 15.0 15.1 44.9 275, 873. 20
3. 801 13.0 13.1 13.2 39.3 255, 135. 80
4.274 11. 4 11.4 11.5 34.3 234, 276. 80
4. 746 9.9 9.9 10.0 29. 8 213, 314. 30
5.219 8.5 8.6 8.6 25.7 192, 262. 10
5.692 7.3 7.3 7.3 22.0 171, 130.70
6. 165 6.2 6.2 6.2 18.5 149, 928. 80
6. 638 51 5.1 5.1 15. 4 128, 663. 10
7.110 4.1 4.1 4.1 12.4 107, 339. 60
7.583 3.2 3.2 3.2 9.6 85, 963. 06
8. 056 2.3 2.3 2.3 7.0 64, 537. 54
8. 529 1.5 1.5 1.5 4.5 43, 066. 65
9. 002 0.7 0.7 0.7 2.2 21, 553. 39
9.474 0.0 0.0 0.0 0.0 0.51
T The values associated with A * are in bold-face.
Appendix
The following notational conventions will be used thoughout this Appendix :

3 fk)=0, It <u,

I k) =1, If u<v,
for any expression f Also, x¥=0 If x=0 and k<Q.
Proof of Theorem 1. For notational convenience define G by

n i—1

G = ,=21 gt h( étk).
It is easy to verify the following identities, for , v =0 :

wu+vy=h(w) h(v),

h'(w) = vh(n),

gw)=ag* (A1)

g'(uw)=—Bg'(u).

It is not difficult to use properties (A1) to demontrate that the following relations are equiv-

alent to the necessary conditions for ( Fl):

h(—t)g (t2)=Ah(— T), and
M—=tHegH)=g()+re(th), for j=1,..., n—1.



Now,

W~ 1) g (D) =aetr=91!
and

gthn+ yg(tf)=ag " (x*), for j=1, 2, ..., n—1,
Where x*=4%¢?T/a Hence, 'and equivalent set of relations is

* P
X, =n,
e(?*ﬂ)tﬁ: { . ]
g™ (x*), 7=1, ..., n—1,

which uniquely define #*.

At this point, a unique #* exists that solves the Kuhn-Tucker conditions provided A* >0 exists
and is finite, and the solution has the form stated in the hypothesis of Theorem 1. It remains
to prove that this solution is a maximizer and that a finite and positive A* exists.

To prove that t* is in fact optimal (7 e. tha Kuhn-Tucker condition are also sufficient) we
show that the Hessian matrix o£ G(¢) at t* is negative-definite. Using the properties (A1) it is
easy to show that the Hessian H of G at (¢*) is given by
LB T gD R Z ), =

Hij= {
—73% 1%
Subtracting row # from every other row produces the matrix H given below, which is equival-
ent to the Hessian of G at (¢%) :
A;, i=jand =1, 2, ..., n—1;
0, jx4 =12 .., n-1 5=12 ..., n—1;

Hi; = . .
! 7, i=1 2 ..., n-1 j=mn;

—d i=mn j=1, 2, ..., n—1,
where v = (B—7) >0, d=72* >0 and

=1 k=1
B { ~(B =9 [(A*+7Z gtnh( Z )], j=1 2, .., n—1;
Aj_ k=1 u=1
— BA* i=n
Notice that A;< 0 for all j=1, 2, .., =

Now, define M; to be the j—th order principal minor determinant of A, and and define D.-;
to be the determinant of the matrix formed from H by deleting the first j rows and columns of
H. Then it is easy to show

M; =(—1VTl | Au| ,j=12 .., n—1,

k=n—j+1

i—1
Dy ==L A D | +0d T [ Aul), j=2 3., n and

n—1
M, =(=1Y [|ADw1 | + 0d 1}2 [ A. |1

Therefore, the principal minor determinants of odd order are negative and of even order are
positive. Tuhs, Hessian is negative definite at ¢* and (¢*) is an optimal solution to (Pl).



We now must establish the existence and uniqueness of the proposed solution. Since we used
the fact that 3't/=T, then x must satisfy

n—1 n
Qx) = T ¢V (x) = I d7P7= g0-AT
j=0 j=1
where x = e e”. If such an x exists and is unique then so is A* and #*.

The following four lemmas establish critical properties of @ and ¢°“, and are needed to com-
plete the proof of Theorem 1.

Lemma Al.
1. g(u) is strictly increasing for # > 0.-
2. q(u) —wu is strictly decreasing (increasing) on [0, 1] ((1, o0)).
3. ¢(1) =1 and ¢(0) = g—, so that q(#) > u on (0, 1).

Proof.

Y

1. q’(u)=u‘9—’7> 0 for all # > 0.
2. ¢(u)—1<0 for #€ (0,1) and the result is immediate.
3. Obvious.

Lemma A2. Let j be any positive integer and # any nonnegative real number. Then,
1, ;=0;
gV (w)=1]i01

o d@® ), j=1

1 g

du

2. ¢9 (u) is increasing for 0 < # < 1.
3.9 () >ufor 0< u < 1.
Proof. Trivial.

Lemma A3.

1. @ is continuously differentiable over [0, 1].

2. @ is strictly increasing over [0, 1].

3. Let % € (0, 1), then there is a unique # € [#, 1] such that Q(x) = x.
Proof.

L Q) =1/2 DI fm(q"‘”(u)) gV (u) ¢ (u) >0.

i=1 J¥%1 k%4 §
n—1
2. Qu) = ,-I=Io T )< ¢"(u) = u, since g9 (u) < 1 for all u € (0, 1).

Since Q is strictly increasing and continuous, there is a unique # € [, 1]
such that Q(u) = u.

Proof of Theorem 1, Continued. Now, let x=¢”®T in Lemma A3. Then we see there
Is a unique #, say # such that Q(Q) = u; put differently, there is unique x(A) such that
Q(x(d)) = ¢”PT and hence a unique Lagrange multiplier A*




mx

y— < T and so

Proof of Lemma 1. Since 0 < i < 7, 0<

e”PT < x< 1, and
ae—ﬂT <,{ <ae—7T'

Proof of Corollary 1. Let x* =x(A*),

so that e ¥ =g (x*), and
(r-Ptr (y=8) ¢}, ofm —3 o(y —i—
¢ __6,7 = gD (x¥) — "D (g%
> q°(n—j*1) (x*) _ q"(n'j*l) (X*)
= 07

which implies that ¢f < tf1  as desired.

Proof of Corollary 2. Let j be an arbitrary period index. The difference in methane produced

In periods 7 and 7+1 is
j—1
h( kZ:1 tr) [g(t5) — h(t) g(ti+1)],

where ¢ is the optimal vector of scheduling periods. All that is needed i1s to show the term
within the brackets is positive. Toward this end, define the function '
fv) =1—q()? —qw)* ' [1-0*), for 0= v=1, \

where ¢ = B/(B—7) > 1. A simple derivative argumment show that f(») < 0 and thus f is
strictly decreasing on [0, 1]. Because f(1) = 0, then f(v) > 0 for 0 = v < 1. Now, using
v=q" " (%),

g(t) — it g (tiv1) = F f(v) > 0.
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