• Title/Summary/Keyword: biological resistance analysis

Search Result 179, Processing Time 0.034 seconds

Characterizing Responses of Biological Trait and Functional Diversity of Benthic Macroinvertebrates to Environmental Variables to Develop Aquatic Ecosystem Health Assessment Index (환경변이에 대한 저서성 대형무척추동물의 생물학적 형질과 기능적 다양성 분석: 수생태계 건강성 평가 관점에서)

  • Moon, Mi Young;Ji, Chang Woo;Lee, Dae-Seong;Lee, Da-Yeong;Hwang, Soon-Jin;Noh, Seong-Yu;Kwak, Ihn-Sil;Park, Young-Seuk
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.1
    • /
    • pp.31-45
    • /
    • 2020
  • The biological indices based on the community structure with species richness and/or abundance are commonly used to assess aquatic ecosystem health. Meanwhile, recently functional traits-based approach is considered in ecosystem health assessment to reflect ecosystem functioning. In this study, we developed a database of biological traits for 136 taxa consisting of major stream insects (Ephemeroptera, Plecoptera, Trichoptera, Coleoptera, and Odonata) collected at Korean streams on the nationwide scale. In addition, we obtained environmental variables in five categories (geography, climate, land use, hydrology and physicochemistry) measured at each sampling site. We evaluated the relationships between community indices based on taxonomic diversity and functional diversity estimated from biological traits. We classified sampling sites based on similarities of their environmental variables and evaluated relations between clusters of sampling sites and diversity indices and biological traits. Our results showed that functional diversity was highly correlated with Shannon diversity index and species richness. The six clusters of sampling sites defined by a hierarchical cluster analysis reflected differences of their environmental variables. Samples in cluster 1 were mostly from high altitude areas, whereas samples in cluster 6 were from lowland areas. Non-metric multidimensional scaling (NMDS) displayed similar patterns with cluster analysis and presented variation of taxonomic diversity and functional diversity. Based on NMDS and community-weighted mean trait value matrix, species in clusters 1-3 displayed the resistance strategy in the life history strategy to the environmental variables whereas species in clusters 4-6 presented the resilience strategy. These results suggest that functional diversity can complement the biological monitoring assessment based on taxonomic diversity and can be used as biological monitoring assessment tool reflecting changes of ecosystem functioning responding to environmental changes.

Dissemination of CTX-M Type Extended-Spectrum β-Lactamases Among Klebsiella pneumoniae Clinical isolates in Chungcheong Province (충청지역의 임상검체에서 분리된 폐렴막대균에 CTX-M형 Extended-Spectrum β-lactamases 확산)

  • Sung, Ji-Youn
    • Journal of Digital Convergence
    • /
    • v.14 no.10
    • /
    • pp.349-354
    • /
    • 2016
  • The emergence and dissemination of extended-spectrum ${\beta}$-lactamse (ESBL) producing Klebsiella pneumoniae isolates make it more difficult to treatment of bacterial infections. In our study, we detected ESBL genes and investigated antimicrobial susceptibility of K. pneumoniae isolates in Chungcheong province. In addition, clonality among the isolates was analyzed by repetitive element sequence (REP)-PCR. Twenty-one of 102 K. pneumoniae isolates produced CTX-M-14 and/or CTX-M-15 and showed high level (over 70%) resistance to third cephalosporins. CTX-M type ESBL producing K. pneumoniae strains isolated in our study showed diverse clonality and some of the isolates have been disseminated in the community. Enhancing infection control will be needed to prevent dissemination of the K. pneumoniae isolates. In addition, for more effective control of resistant bacteria it is considered necessary to monitor the database constructed through convergence of biological investigation and statistical analysis of antimicrobial resistance genes.

Identification of Glycine max Genes Expressed in Response to Soybean mosaic virus Infection

  • Jeong, Rae-Dong;Lim, Won-Seok;Kwon, Sang-Wook;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.47-54
    • /
    • 2005
  • Identification of host genes involved in disease progresses and/or defense responses is one of the most critical steps leading to the elucidation of disease resistance mechanisms in plants. Soybean mosaic virus (SMV) is one of the most prevalent pathogen of soybean (Glycine max). Although the soybeans are placed one of many important crops, relatively little is known about defense mechanism. In order to obtain host genes involved in SMV disease progress and host defense especially for virus resistance, two different cloning strategies (DD RT-PCR and Subtractive hybridization) were employed to identify pathogenesis- and defenserelated genes (PRs and DRs) from susceptible (Geumjeong 1) and resistant (Geumjeong 2) cultivars against SMV strain G7H. Using these approaches, we obtained 570 genes that expressed differentially during SMV infection processes. Based upon sequence analyses, differentially expressed host genes were classified into five groups, i.e. metabolism, genetic information processing, environmental information processing, cellular processes and unclassified group. A total of 11 differentially expressed genes including protein kinase, transcription factor, other potential signaling components and resistant-like gene involved in host defense response were selected to further characterize and determine expression profiles of each selected gene. Functional characterization of these genes will likely facilitate the elucidation of defense signal transduction and biological function in SMV-infected soybean plants.

Fouling analysis and biomass distribution on a membrane bioreactor under low ratio COD/N

  • Gasmi, Aicha;Heran, Marc;Hannachi, Ahmed;Grasmick, Alain
    • Membrane and Water Treatment
    • /
    • v.6 no.4
    • /
    • pp.263-276
    • /
    • 2015
  • This paper deals with the influence of chemical oxygen demand to nitrogen ratio ((COD/N) ratio) on the performance of an membrane bioreactor. We aim at establishing relations between COD/N ratio, organisms' distribution and sludge properties (specific resistance to filtration (SRF) and membrane fouling). It is also essential to define new criteria to characterize the autotrophic microorganisms, as the measurements of apparent removal rates of ammonium seem irrelevant to characterize their specific activity. Two experiments (A and B) have been carried on a 30 L lab scale membrane bioreactor with low COD/N ratio (2.3 and 1.5). The obtained results clearly indicate the role of the COD/N ratio on the biomass distribution and performance of the membrane bioreactor. New specific criteria for characterising the autotrophic microorganisms activity, is also defined as the ratio of maximum ammonium rate to the specific oxygen uptake rate in the endogenous state for autotrophic bacteria which seem to be constant whatever the operating conditions are. They are about 24.5 to 23.8 $gN-NH_4{^+}/gO_2$, for run A and B, respectively. Moreover, the filterability of the biological suspension appear significantly lower, specific resistance to filtration and membrane fouling rate are less than $10^{14}m^{-2}$ and $0.07\;10^{12}m^{-1}.d^{-1}$ respectively, than in conventional MBR confirming the adv < antage of the membrane bioreactor functioning under low COD/N ratio.

Whole Genome Sequencing of Two Musa Species Towards Disease Resistance and Fiber Quality Improvement

  • John Ivan Pasquil;Richellen Plaza;Roneil Christian Alonday;Damsel Bangcal;Julianne Villela;Antonio, Lalusin;Maria Genaleen Diaz;Antonio Laurena
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.32-32
    • /
    • 2022
  • Abaca (Musa textilis L. Nee) is a native Musa species from the Philippines known for its natural fiber. Abaca fiber a.k.a. Manila hemp extracted from its pseudostems is considered one of the strongest fibers in the world. This is used for commodities such as ropes, papers, and money bills. Abaca is vulnerable to pests and diseases such as the Abaca Bunchy Top Disease (ABTD) caused by Abaca Bunchy Top Virus (ABTV) and Banana Bunchy Top Virus (BBTV). Inosa, one of the varieties of abaca utilized in the Philippines, is highly susceptible to ABTD. In contrast, Pacol (Musa balbisiana L.), a close relative of abaca, is highly resistant to the same disease. Here, we report the sequencing and de novo genome assembly of both abaca var. Inosa and banana var. Pacol. A total of ~16 Gb and ~21 Gb raw reads for Inosa and Pacol, respectively, were generated using Pacbio Hifi sequencing method and assembled with Hifiasm. High-quality de novo assemblies of both Musa species with 99% recovered as per BUSCO analysis were obtained. The assembled Inosa genome has a total length of ~654 Mb and N50 of 7 Mb while Pacol has a total length of 527 Mb and N50 of 3 Mb which are close to their estimated genome size of ~638 Mb and ~503 Mb, respectively. The information that can be derived from the de novo assembled genomes would provide a solid foundation for further research in disease resistance and fiber quality improvement in abaca.

  • PDF

Transformation of Metarhizium anisopliae by using pBRG-4 (pBRG-4를 이용한 Metarhizium anisopliae의 형질전환)

  • Lee, Dong-Gyu;Yeh, Wan-Hae;Hwang, Cher-Won;Kwon, Suk-Tae;Kang, Sun-Chul
    • Applied Biological Chemistry
    • /
    • v.41 no.3
    • /
    • pp.219-223
    • /
    • 1998
  • We have established a transformation system for entomopathogenic fungus, Metarhizium anisopliae, in order to develop mycoinsecticide by recombinant DNA techniques. Protoplasts of M. anisopliae would be transformed to a benomyl-resistant by introducing pBRG-4 plasmid DNA, which contains a ${\beta}-tubulin$ gene of Aspergillus flavus conferring resistance to benomyl and a pyr4 gene of Neurospora crassa, in the presence of 5% polyethylene glycol and 10 mM calcium chloride. Transformants occuring at a frequency of 10 colonies per $50\;{\mu}g$ pBRG-4 DNA grew on the $5\;{\mu}g/ml$ concentrations of benamyl, while the wild type was inhibited by $2.5\;{\mu}g/ml$. From the Southern analysis using genomic DNAs isolated from M. anisopliae transformants, the positive signals suggested that the ${\beta}-tubulin$ gene had integrated in the M. anisopliae genome by homologous recombination.

  • PDF

Biological characterization of Brucella spp. isolated from cattle in Gyeongbuk, Korea (국내 경북지역 소에서 분리된 브루셀라 분리주의 생물학적 특성)

  • Kim, Jeong-Hwa;Lim, Jeong Ju;Kim, Dong Hyeok;Lee, Jin Ju;Kim, Dae Geun;Jun, Moo-Hyung;Kim, Sang Hun;Chang, Hong Hee;Lee, Hu Jang;Min, Won-Gi;Kim, Suk
    • Korean Journal of Veterinary Research
    • /
    • v.50 no.2
    • /
    • pp.117-124
    • /
    • 2010
  • Members of the genus Brucella are facultative intracellular bacteria and cause brucellosis, a chronic disease in humans and abortion in animals. In this study, we tested sera for brucellosis of 15 Hanwoo farms in the western part of Gyeong-buk province, resulting 5 farms were brucellosis positive in 2008. We collected blood from 277 heads in the brucellosis positive 5 farms, and performed serological diagnosis, brucella positive cattle which had shown higher than 200 antibody titer in tube agglutination test were slaughtered, supramammary lymph nodes were collected, and Brucella spp. wild type isolation and identification were performed. From these results, 15 of Brucella spp. wild type strains were isolated and all strains were identified as B. abortus biotype 1 by biological and molecular analysis. In the antimicrobial susceptibility test, all 15 strains had a similar susceptibility and resistance pattern. This study may be useful for bacteriological and epidemiological understanding of cattle brucellosis in Korea.

A Study on the Effect of Water Freezing on the Characteristics of Polymer Electrolyte Membrane Fuel Cells (물의 결빙이 고분자전해질 연료전지 성능에 미치는 영향 및 그 원인에 관한 연구)

  • Ko, Jae-Joon;Cho, Eun-Ae;Ha, Heung-Yong;Hong, Seong-Ahn;Lee, Kwan-Young;Lim, Tae-Won;Oh, In-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.36-40
    • /
    • 2003
  • Freezing of water in a polymer electrolyte membrane fuel cell (PEMFC) may cause severe problems in driving a fuel cell vehicle during the winter time. Characteristics of PEMFC which suffered low temperatures below zero degree was examined with the thermal cycles from 80 to $-10^{\circ}C$. With the thermal cycles, the cell performance was degraded due to the phase transformation and volume changes of water. Effects of freezing of water in PEMFC on the electrode structure and polarization resistance were examined by BET analysis, cyclic voltammetry, and AC impedance spectroscopy.

Taxonomic and Functional Changes of Bacterial Communities in the Rhizosphere of Kimchi Cabbage After Seed Bacterization with Proteus vulgaris JBLS202

  • Bhattacharyya, Dipto;Duta, Swarnalee;Yu, Sang-Mi;Jeong, Sang Chul;Lee, Yong Hoon
    • The Plant Pathology Journal
    • /
    • v.34 no.4
    • /
    • pp.286-296
    • /
    • 2018
  • Maintenance of a beneficial microbial community, especially in the rhizosphere, is indispensable for plant growth and agricultural sustainability. In this sense, plant growth-promoting rhizobacteria (PGPR) have been extensively studied for their role in plant growth promotion and disease resistance. However, the impact of introducing PGPR strains into rhizosphere microbial communities is still underexplored. We previously found that the Proteus vulgaris JBLS202 strain (JBLS202) promoted growth of Kimchi cabbage and altered the relative abundance of total bacteria and Pseudomonas spp. in the treated rhizosphere. To extend these findings, we used pyrosequencing to analyze the changes in bacterial communities in the rhizosphere of Kimchi cabbage after introduction of JBLS202. The alterations were also evaluated by taxon-specific realtime PCR (qPCR). The pyrosequencing data revealed an increase in total bacteria abundance, including specific groups such as Proteobacteria, Acidobacteria, and Actinobacteria, in the treated rhizosphere. Time-course qPCR analysis confirmed the increase in the abundance of Acidobacteria, Actinobacteria, Alphaproteobacteria, and Betaproteobacteria. Furthermore, genes involved in nitrogen cycling were upregulated by JBLS202 treatment indicating changes in ecological function of the rhizosphere soil. Overall, these results indicate that introduction of JBLS202 alters both the composition and function of the rhizosphere bacterial community, which can have direct and indirect effects on plant growth. Therefore, we propose that long-term changes in bacterial composition and community-level function need to be considered for practical use of PGPRs.

Optimizing the fermentation condition of low salted squid jeotgal by lactic acid bacteria with enhanced antioxidant activity

  • Akther, Fahima;Le, Bao;Chung, Gyuhwa;Yang, Seung Hwan
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.4
    • /
    • pp.391-402
    • /
    • 2017
  • Lactic acid bacteria (LAB) are widely used as starter culture in food fermentation due to their harmless entity and health beneficial properties along with the ability to change texture, aroma, flavor and acidity of food products. In this study, five different LAB (FB003, FB058, FB077, FB081, and FB111) isolated from different Korean traditional fermented foods, assigned to Lactobacillus plantarum, Pediococcus pentosaceus, Weissella viridescens, Lactobacillus sakei, and Leuconostoc mesenteroides, respectively, on the basis of their physiological properties and 16S rRNA sequence analysis, to use as fermentation starter and check their ability to fasten the ripening time as well as the overall optimization in the fermentation condition. To check their suitability as starters, their safety, acid and bile tolerance, NaCl and temperature resistance, susceptibility to common antibiotics, and antimicrobial activities were determined. Squid jeotgal samples were prepared by adding $10^8CFU/g$ of each strain in different samples, which were then kept for fermentation at $4^{\circ}C$ and checked for their antioxidant activities at 0, 7, 15, and 21-day intervals. The samples fermented with FB003 and FB077 displayed the highest antioxidant activity. This study revealed two effective starter cultures (FB003, FB077) for squid jeotgal fermentation, which presented increased functionalities. The results of this study will lead to the development of novel industrial-scale production avenues for jeotgal preparation, and offer new insights into the prevention and control of chronic diseases.