DOI QR코드

DOI QR Code

Taxonomic and Functional Changes of Bacterial Communities in the Rhizosphere of Kimchi Cabbage After Seed Bacterization with Proteus vulgaris JBLS202

  • Bhattacharyya, Dipto (Division of Biotechnology, Chonbuk National University) ;
  • Duta, Swarnalee (Division of Biotechnology, Chonbuk National University) ;
  • Yu, Sang-Mi (Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources) ;
  • Jeong, Sang Chul (Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources) ;
  • Lee, Yong Hoon (Division of Biotechnology, Chonbuk National University)
  • Received : 2018.03.20
  • Accepted : 2018.05.31
  • Published : 2018.08.01

Abstract

Maintenance of a beneficial microbial community, especially in the rhizosphere, is indispensable for plant growth and agricultural sustainability. In this sense, plant growth-promoting rhizobacteria (PGPR) have been extensively studied for their role in plant growth promotion and disease resistance. However, the impact of introducing PGPR strains into rhizosphere microbial communities is still underexplored. We previously found that the Proteus vulgaris JBLS202 strain (JBLS202) promoted growth of Kimchi cabbage and altered the relative abundance of total bacteria and Pseudomonas spp. in the treated rhizosphere. To extend these findings, we used pyrosequencing to analyze the changes in bacterial communities in the rhizosphere of Kimchi cabbage after introduction of JBLS202. The alterations were also evaluated by taxon-specific realtime PCR (qPCR). The pyrosequencing data revealed an increase in total bacteria abundance, including specific groups such as Proteobacteria, Acidobacteria, and Actinobacteria, in the treated rhizosphere. Time-course qPCR analysis confirmed the increase in the abundance of Acidobacteria, Actinobacteria, Alphaproteobacteria, and Betaproteobacteria. Furthermore, genes involved in nitrogen cycling were upregulated by JBLS202 treatment indicating changes in ecological function of the rhizosphere soil. Overall, these results indicate that introduction of JBLS202 alters both the composition and function of the rhizosphere bacterial community, which can have direct and indirect effects on plant growth. Therefore, we propose that long-term changes in bacterial composition and community-level function need to be considered for practical use of PGPRs.

Keywords

References

  1. Bais, H. P., Broeckling, C. D. and Vivanco, J. M. 2008. Root exudates modulate plant-microbe interactions in the rhizosphere. In: Soil Biol., ed. by P. Karlovsky, pp. 241-252. Springer, Berlin, Germany.
  2. Bending, G. D., Rodriguez-Cruz, M. S. and Lincoln, S. D. 2007. Fungicide impacts on microbial communities in soils with contrasting management histories. Chemosphere 69:82-88. https://doi.org/10.1016/j.chemosphere.2007.04.042
  3. Bhattacharyya, D. and Lee, Y. H. 2016. The bacterial community in the rhizosphere of Kimchi cabbage restructured by volatile compounds emitted from rhizobacterium Proteus vulgaris JBLS202. Appl. Soil Ecol. 105:48-56. https://doi.org/10.1016/j.apsoil.2016.03.020
  4. Bhattacharyya, D., Garladinne, M. and Lee, Y. H. 2015. Volatile indole produced by rhizobacterium Proteus vulgaris JBLS202 stimulates growth of Arabidopsis thaliana through auxin, cytokinin, and brassinosteroid pathways. J. Plant. Growth. Regul. 34:158-168. https://doi.org/10.1007/s00344-014-9453-x
  5. Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L. and Schulze-Lefert, P. 2013. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64:807-838. https://doi.org/10.1146/annurev-arplant-050312-120106
  6. Burgmann, H., Meier, S., Bunge, M., Widmer, F. and Zeyer, J. 2005. Effects of model root exudates on structure and activity of a soil diazotroph community. Environ. Microbiol. 7:1711-1724. https://doi.org/10.1111/j.1462-2920.2005.00818.x
  7. Chowdhury, S. P., Dietel, K., Rändler, M., Schmid, M., Junge, H., Borriss, R., Hartmann, A. and Grosch, R. 2013. Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. PloS One 8:e68818. https://doi.org/10.1371/journal.pone.0068818
  8. Chun, J. and Goodfellow, M. 1995. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 45:240-245. https://doi.org/10.1099/00207713-45-2-240
  9. Chun, J., Lee, J. H., Jung, Y., Kim, M., Kim, S., Kim, B. K. and Lim, Y. W. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57:2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  10. Dutta, S. and Podile, A. R. 2010. Plant growth promoting rhizobacteria (PGPR): Bugs to debug the root zone. Crit. Rev. Microbiol. 36:232-244. https://doi.org/10.3109/10408411003766806
  11. Dutta, S., Rani, T. S. and Podile, A. R. 2013. Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion. Plos One 8:e78369. https://doi.org/10.1371/journal.pone.0078369
  12. Eddy, S. R. 2011. Accelerated profile HMM Searches. PLoS Comput. Biol. 7:e1002195. https://doi.org/10.1371/journal.pcbi.1002195
  13. Glick, B. R., Todorovic, B., Czarny, J., Cheng, Z., Duan, J. and McConkey, B. 2007. Promotion of plant growth by bacterial ACC deaminase. Crit. Rev. Plant Sci. 26:227-242. https://doi.org/10.1080/07352680701572966
  14. Hai, B., Diallo, N. H., Sall, S., Haesler, F., Schauss, K., Bonzi, M., Assigbetse, K., Chotte, J. L., Munch, J. C. and Schloter, M. 2009. Quantifcation of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agroecosystems. Appl. Environ. Microbiol. 75:4993-5000. https://doi.org/10.1128/AEM.02917-08
  15. Heck, K. L. Jr., Van Belle, G. and Simberloff, D. 1975. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56:1459-1461. https://doi.org/10.2307/1934716
  16. Hirsch, P. R., Mauchline, T. H. and Clark, I. M. 2010. Culture-independent molecular techniques for soil microbial ecology. Soil Biol. Biochem. 42:878-887. https://doi.org/10.1016/j.soilbio.2010.02.019
  17. Hou, J., Liu, W., Wang, B., Wang, Q., Luo, Y. and Franks, A. E. 2015. PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere 138:592-598. https://doi.org/10.1016/j.chemosphere.2015.07.025
  18. Huang, X. F., Chaparro, J. M., Reardon, K. F., Zhang, R., Shen, Q. and Vivanco, J. M. 2014. Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267-275. https://doi.org/10.1139/cjb-2013-0225
  19. Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Azarova, T., Makarova, N. and Lugtenberg, B. 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant-Microbe Interact. 19:250-256. https://doi.org/10.1094/MPMI-19-0250
  20. Kang, Y., Shen, M., Wang, H. and Zhao, Q. 2013. A possible mechanism of action of plant growth promoting rhizobacteria (PGPR) strain Bacillus pumilus WP8 via regulation of soil bacterial community structure. J. Gen. Appl. Microbiol. 59:267-277. https://doi.org/10.2323/jgam.59.267
  21. Kim, M., Yoon, H., Kim, Y. E., Kim, Y. J., Kong, W. S. and Kim, J. G. 2014. Comparative analysis of bacterial diversity and communities inhabiting the fairy ring of Tricholoma matsutake by barcoded pyrosequencing. J. Appl. Microbiol. 117:699-710. https://doi.org/10.1111/jam.12572
  22. Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S. and Chun, J. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultures species. Int. J. Syst. Evol. Microbiol. 62:716-721. https://doi.org/10.1099/ijs.0.038075-0
  23. Kozdroj, J. 2008. Microbial community in the rhizosphere of young maize seedlings is susceptible to the impact of introduced pseudomonads as indicated by FAME analysis. J. Gen. Appl. Microbiol. 54:205-210. https://doi.org/10.2323/jgam.54.205
  24. Kwon, S., Kim, T. S., Yu, G. H., Jung, J. H. and Park, H. D. 2010. Bacterial community composition and diversity of a full-scale integrated fxed-flm activated sludge system as investigated by pyrosequencing. J. Microbiol. Biotechnol. 20:1717-1723.
  25. LaSala, P. R., Segal, J., Han Faye, S., Tarrand Jeffrey, J. and Han Xiang, Y. 2007. First reported infections caused by three newly described genera in the family Xanthomonadaceae. J. Clin. Microbiol. 45:641-644. https://doi.org/10.1128/JCM.01938-06
  26. Li, W. Z. and Godzik, A. 2006. Cd-hit: a fast program for clustering and comparing large setsof protein or nucleotide sequences. Bioinformatics 22:1658-1659. https://doi.org/10.1093/bioinformatics/btl158
  27. Liu, D., Liu, Y., Fang, S. and Tian, Y. 2015. Tree species composition influenced microbial diversity and nitrogen availability in rhizosphere soil. Plant Soil Environ. 61:438-443.
  28. Lo, C. C. 2010. Effect of pesticides on soil microbial community. J. Environ. Sci. Health B 45:348-359.
  29. Lugtenberg, B. and Kamilova, F. 2009. Plant-growth promoting rhizobacteria. Annu. Rev. Microbiol. 63:541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918
  30. Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J. H., Piceno, Y. M., DeSantis, T. Z., Anderson, G. L., Bakker, P. A. and Raaijmakers, J. M. 2011. Deciphering the rhizosphere microbiome. Science 332:1097-1100. https://doi.org/10.1126/science.1203980
  31. Myers, E. W. and Miller, W. 1988. Optimal alignments in linear space. Comput. Appl. Biosci. 4:11-17.
  32. Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G. and Renella, G. 2003. Microbial diversity and soil functions. Eur. J. Soil Sci. 54:655-670. https://doi.org/10.1046/j.1351-0754.2003.0556.x
  33. Piromyou, P., Buranabanyat, B., Tantasawat, P., Tittabutr, P., Boonkerd, N. and Teaumroong, N. 2011. Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. Eur. J. Soil. Biol. 47:44-54. https://doi.org/10.1016/j.ejsobi.2010.11.004
  34. Qiu, M., Zhang, R., Xue, C., Zhang, S., Li, S., Zhang, N. and Shen, Q. 2012. Application of a novel bio-organic fertilizer can control Fusarium wilt by regulating the microbial community of cucumber rhizosphere soils. Biol. Fert. Soils 48:807-816. https://doi.org/10.1007/s00374-012-0675-4
  35. Sanguin, H., Sarniguet, A., Gazengel, K., Moenne-Loccoz, Y. and Grundmann, G. 2009. Rhizosphere bacterial communities associated with disease suppressiveness stages of take-all decline in wheat monoculture. New Phytol. 184:694-707. https://doi.org/10.1111/j.1469-8137.2009.03010.x
  36. Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J. and Weber, C. F. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537-7541. https://doi.org/10.1128/AEM.01541-09
  37. Shen, Z., Ruan, Y., Chao, X., Zhang, J., Li, R. and Shen, Q. 2015. Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biol. Fert. Soils 51:553-562. https://doi.org/10.1007/s00374-015-1002-7
  38. Somers, E., Vanderleyden, J. and Srinivasan, M. 2004. Rhizosphere bacterial signalling: a love parade beneath our feet. Crit. Rev. Microbiol. 30:205-240. https://doi.org/10.1080/10408410490468786
  39. Sugiyama, A., Ueda, Y., Zushi, T., Takase, H. and Yazaki, K. 2014. Changes in the bacterial community of soybean rhizospheres during growth in the feld. PLoS One 9:e100709. https://doi.org/10.1371/journal.pone.0100709
  40. Trabelsi, D. and Mhamdi, R. 2013. Microbial inoculants and their impact on soil microbial communities: A review. Biomed. Res. Int. 2013:863240.
  41. Trivedi, P., He, Z., Van Nostrand, J. D., Albrigo, G., Zhou, J. and Wang, N. 2012. Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere. ISME J. 6:363-383. https://doi.org/10.1038/ismej.2011.100
  42. Unno, T., Jang, J., Han, D., Kim, J. H., Sadowsky, M. J., Kim, O. S., Chun, J. and Hur, H. G. 2010. Use of barcoded pyrosequencing and shared OTUs to determine sources of fecal bacteria in watersheds. Environ. Sci. Technol. 44:7777-7782. https://doi.org/10.1021/es101500z
  43. Wang, F., Liang, Y., Jiang, Y., Yang, Y., Xue, K., Xiong, J., Zhou, J. and Sun, B. 2015. Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling. Sci. Rep. 5:14345. https://doi.org/10.1038/srep14345
  44. Yu, S. M. and Lee, Y. H. 2013. Plant growth promoting rhizobacterium Proteus vulgaris JBLS202 stimulates the seedling growth of Chinese cabbage through indole emission. Plant Soil 370:485-495. https://doi.org/10.1007/s11104-013-1652-x
  45. Zinger, L., Shanhavaz, B., Baptist, F., Geremia, R. A. and Choler, P. 2009. Microbial diversity in alpine tundra soils correlates with snow cover dynamics. ISME J. 3:850-859. https://doi.org/10.1038/ismej.2009.20