• Title/Summary/Keyword: biological reduction

Search Result 1,231, Processing Time 0.027 seconds

Copper ion Toxicity Causes Discrepancy between Acetate Degradation and Methane Production in Granular Sludge

  • Bae, Jin-Woo;Rhee, Sung-Keun;Jang, Am;Kim, In-S.;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.849-853
    • /
    • 2002
  • Metal ions have an adverse effect on anaerobic digestion. In an acetate degradation test of upflow of anaerobic sludge blanket granules with $Cu^{2+}$, not all of the acetate that disappeared was stoichiometrically converted to methane. In the presence of 400 mg/g-VSS (volatile suspended solids) $Cu^{2+}$, only 26% of the acetate consumed was converted to methane. To study acetate conversion by other anaerobic microorganisms, sulfate and nitrate reductions were investigated in the presence of $Cu^{2+}$ Sulfate and nitrate reductions exhibited more resistance to $Cu^{2+}$than methanogenesis, and the granules reduced 2.2 mM and 5.4 mM of nitrate and sulfate, respectively, in the presence of 400 mg/g-VSS copper ion. However, the acetate degraded by sulfate and nitrate reductions was only 24% of the missing acetate that could have been stoichiometrically converted to $CO_2$. Accordingly, 76% of the acetate consumed appeared to have been converted to other unknown compounds.

Characteristics of Acid Fermentation and Alkali Pretreatment of Organic Wastes (유기성 폐기물의 산발효 특성 및 알카리 전처리에 관한 연구)

  • 박종안;허준무
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.1
    • /
    • pp.108-116
    • /
    • 2001
  • It is difficult to task to achieve high biological nutrient removal from municipal wastewater because of low organic content. Volatile fatty acids(VFAs) produced from acid fermentation of food wastes can be utilized as external carbon sources for the biological nutrient process. Significant reduction and stabilization of the food wastes can also be obtained from the acid fermentation. The objective of this study is to evaluate characteristics of acid fermentation of the food wastes. Results obtained from the batch experiment of various organic wastes showed that the food wastes had high potential to be used as an external carbon source because of the largest production of the VFAs with low nitrogen and phosphorus content. The fish waste was found to be the next possible organic waste, while the others such as radish cabbage and molasses waste showed high VFAs consumption potential as a results of high nitrogen and phosphorus content. alkaline hydrolysis of the food waste was carried out using NaOH prior to the acid fermentation. As the alkali addition increased, solubilization of the organics as well as TSS reduction increased. However, fraction of soluble COD to total COD became stable after a sharp increase. Alkali addition greater than 0.5g NaOH per g TS resulted in significant increase in pH.

  • PDF

Tolerance of Several Woody Plants to Sulphur Dioxide

  • Hwangbo, Jun-Kwon;Lee, Chang-Seok;Kim, Joon-Ho
    • Animal cells and systems
    • /
    • v.4 no.4
    • /
    • pp.337-340
    • /
    • 2000
  • The photosynthetic and stomatal responses of several woody plants (Powlonia coreana, Firmiana simplex, Quercus acutissima Q. variabilis and Q. serrata) to SO$_2$ were investigated in order to understand their ecophysiological tolerance to $SO_2$ Of the plants, P, coreana showed the largest reduction in its photosynthesis in response to exposure of 0.4 ppm $SO_2$ for 20 h. Fumigation of 0.7 ppm $SO_2$ for 20 h caused complete leaf necrosis of P. coreana and f simplex, which made them unavailable for the measurement of photosynthesis. Q. variabilis exhibited the smallest reduction in photosynthesis following exposure of 0.7 ppm $SO_2$ for 20 h. Both stomatal- and non-stomatal inhibition of the plants by $SO_2$ were determined according to equations by lkeda et at. (1992). When exposed to 0.4 ppm $SO_2$ for 20 h, F. simplex and P. coreana showed the lowest stomatal and non-stomatal inhibition, respectively, while Q. variabilis and Q. serrata exhibited the lowest stomatal and non-stomatal inhibition, respectively, in response to 0.7 ppm $SO_2$ for 20 h. The data are discussed with regard to resistance mechanisms of other plants to $SO_2$ exposure and implications for restoration of declined Korean forests.

  • PDF

Enhance degradation of insecticide chlorpyrifos by iron salts and potassium persulfate during zerovalent iron treatment in aqueous solution

  • Rahman, M. Mokhlesur;Hwang, Jung-In;Kwak, Se-Yeon;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.383-389
    • /
    • 2018
  • Degradation of the insecticide O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate (chlorpyrifos) in aqueous solution was investigated using iron salts and potassium persulfate during ZVI treatment through a series of batch experiments. The degradation rate of chlorpyrifos increased with increases in the concentrations of iron salts and potassium persulfate in the aqueous system. Ferric chloride was found to be the most effective iron salt for the ZVI-mediated degradation of chlorpyrifos in aqueous solution. Further, the iron salts tested could be arranged in the following order in terms of their effectiveness: $FeCl_3$> $Fe_2(SO_4)_3$> $Fe(NO_3)_3$. The persulfate-ZVI system could significantly degrade chlorpyrifos present in the aqueous medium. This revealed that chlorpyrifos degradation by treatment with $Fe^0$ was promoted on adding ferric chloride and potassium persulfate. The kinetics of the degradation of chlorpyrifos by persulfate-amended $Fe^0$ was higher than that for iron-salt-amended $Fe^0$. This suggests that using a sequential $Fe^0$ reduction-ferric chloride or $Fe^0$ reduction-persulfate process may be an effective strategy to enhance the removal of chlorpyrifos in contaminated water.

Review on the Remediation Method for Groundwater Contaminated with Cadmium (지하수 중 카드뮴 저감 방안에 대한 고찰)

  • Kwon, JongBeom;Park, Sunhwa;Kim, Deok Hyun;Yoon, JongHyun;Choi, Hyeonhee;Kim, Moonsu;Kim, Young;Shin, Sun-Kyoung;Kim, Hyun-Koo
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.4
    • /
    • pp.22-36
    • /
    • 2022
  • Cadmium is a class 1 carcinogen classified by the International Agency for Research on Cancer (IARC) and has a high potential for leaching into groundwater. Therefore, it is necessary to address cadmium contamination by employing adequate treatment methodologies. Although various methods have been suggested to reduce cadmium in groundwater, their applications often suffer from various limitation arising from heterogeneous field conditions and technical difficulties. In this work, several in-situ technologies to treat cadmium contaminated groundwater were reviewed and discussed by separately addressing physicochemical, chemical and biological methods. In particular, the optimum cadmium remediation strategies that involve physical removal of source area → physicochemical and chemical remediation → biological remediation were proposed by considering reduction efficiency, adsorption rate, economic feasibility and ease of field application in groundwater.

The effect of aromatherapy on pain in individuals with diabetes: a systematic review and meta-analysis

  • Mi-Kyoung Cho;Mi Young Kim
    • Journal of Korean Biological Nursing Science
    • /
    • v.26 no.2
    • /
    • pp.71-82
    • /
    • 2024
  • Purpose: This study systematically analyzed the impact of aromatherapy on pain in individuals with diabetes. Methods: A search was performed in seven electronic databases based on the PICO-SD (Population, Intervention, Comparison, Outcome, Study Design) framework. The population (P) of interest was individuals with diabetes, and the intervention (I) included aromatherapy targeting pain reduction. The comparison (C) consisted of control groups that received no intervention, another intervention, or usual care. The outcome (O) measured was pain. The quality of the selected literature was assessed using the Joanna Briggs Institute checklist. In MIX 2.0 Pro, the pooled overall effect of pain was calculated using Hedge's g and a random-effects model, and heterogeneity was calculated using the Q statistic and Higgin's I2 values. Meta-regression and exclusion sensitivity analyses were performed. Results: Five articles and seven studies were included, showing a significant pooled overall effect of aromatherapy on diabetes-related pain (Hedge's g = -1.83, 95% CI: -2.76 to -0.91). Meta-regression demonstrated that effectiveness in reducing pain was associated with studies conducted in West Asia, those with IRB approval, and those receiving funding. Additionally, interventions involving subjects under 60, lavender oil (vs. turpentine oil or blended oils), massage therapy (vs. topical application), fewer hours per session, and more repeated measurements (vs. pre/post measurements) were associated with pain reduction. Conclusion: Aromatherapy, especially with lavender oil, effectively manages diabetes-related pain. Short-duration massage application is also effective. A personalized selection of oil type and application method could optimize therapeutic outcomes for individuals with diabetes.

AN EXPERIMENTAL STUDY OF THE EFFECT ON PULP TEMPERATURE DURING ABUTMENT PREPARATION (지대치 형성이 치수온도에 미치는 영향에 관한 실험적 연구)

  • Kim, Byong-Ki
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.14 no.1
    • /
    • pp.47-54
    • /
    • 1976
  • Pulpal temperature is changed in response for various conditions which were mechanical, thermal, chemical and biological stimuli. This study was performed to determine the pulpal temperature changes which were using air turbine with air-water coolant, water coolant, and conventional dental engine with water coolant and no coolant on 28 canine of dogs. In order to record pulpal temperature, pulp chamber was opened on the labiocervical area of canine. Thermocouple was inserted into pulp chamber and was fixed with filling material(dycal). Changes of pulpal temperature were recorded on the physiograph, which had been standardized temperature degree, through thermocouple to thermistor bridge and carrier preamplifier. The amount of experimental temperature change to that of control was interpreted in the pulpal cavity. The obtained results were as followings: 1. The mean normal temperature was 33.07 centigrade. 2. The temperature was decreased than normal pulpal temperature. It was 12.04 centigrade in reduction by air turbine with air-water coolant, 7.17 centigrade in reduction by air turbine with air coolant, 5.54 centigrade in reduction by conventional engine with water coolant, and 1.26 centigrade in reduction by conventional engine with no coolant. 3. The time for maximal temperature change was 53.3 seconds in reduction by air turbine with air-water coolant, 73.4 seconds in reduction by air turbine with air coolant, 50.9 seconds in reduction by conventional engine with water coolant, and 27.1 seconds in reduction by conventional engine with no coolant. 4.. After reduction was ceased, the recovery time to normal pulp temperature was 287.1 seconds in air turbine with air-water coolant, 189.0 seconds in air turbine with air coolant, 86.9 seconds in conventional engine with water coolant, and 52.9 seconds in conventional engine with no coolant respectively.

  • PDF

Characteristics of Transformation Process of Wastewater in Sewer (하수관거내 오염물질 성상변화 특성)

  • Lee, Doo-Jin;Kim, Moon-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.911-916
    • /
    • 2005
  • In this study, variations of water quality, sediment size and contaminant substances are analyzed at upstream and downstream in sewer systems in order to evaluate the characteristics of wastewater transformation by physico-chemical and biological reactions. The differences of DOC concentration between up and down stream showed the range of $-5.8{\sim}18.6$ from the result of continuous measurement at up and down stream. About 8.4% of DOC concentration was reduced and reduction rate was 2.3 mg/L/km. SS reduction rate was measured by 5.5 mg/L/km, 0.22 mg/L/min from upstream to downstream, which was twice than DOC reduction rate. When pollution load reduction was evaluated considering infiltration/inflow effect, DOC load was eliminated from 1,230 ka/d to 1,167 kg/d by physi-chemical and biological reaction in a sewer and 7.8% of the SS in upstream station was reduced under dry weather condition. The results showed that the characteristics of transformation process of wastewater in sewer should be considered for design and operation of wastewater treatment plant.

Synthesis of Trimetallic (PtRu-Sn/VC, PtRu-Ni/VC) Catalysts by Radiation Induced Reduction for Direct Methanol Fuel Cell (DMFC) (방사선환원법을 이용한 직접메탄올연료전지용(DMFC) 삼성분계촉매(PtRu-Sn/VC, PtRu-Ni/VC)의 합성)

  • Kim, Sang Kyum;Park, Ji Yun;Hwang, Sun Choel;Lee, Do Kyun;Lee, Sang Heon;Rhee, Young Woo;Han, Moon Hee
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.320-326
    • /
    • 2013
  • Nano-sized PtRu-Ni/VC and PtRu-Sn/VC electrocatalysts were synthesized by a one-step radiation-induced reduction (RIR) (30 kGy) process using distilled water as the solvent and Vulcan XC-72 as the supporting material. The obtained electrocatalysts were characterized by transmission electron microscopy (TEM), scanning electron microscope energy dispersive spectroscopic (SEM-EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The catalytic efficiency of electrocatalysts was examined for oxygen reduction, MeOH oxidation and CO stripping decreased in the following order, Hydrogen stripping : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK). MeOH oxidation : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/ VC$^{(R)}$ (E-TEK). Unit cell performance : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK) catalysts.

Nitrogen Biofixing Bacteria Compensate for the Yield Loss Caused by Viral Satellite RNA Associated with Cucumber Mosaic Virus in Tomato

  • Dashti, N.H.;Montasser, M.S.;Ali, N.Y.;Bhardwaj, R.G.;Smith, D.L.
    • The Plant Pathology Journal
    • /
    • v.23 no.2
    • /
    • pp.90-96
    • /
    • 2007
  • To overcome the problem of the yield reduction due to the viral satellite mediated protection, a culture mix of three nitrogen-fixing bacteria species of the genus Azospirillum (A. brasilienses N040, A. brasilienses SP7, and A. lipoferum MRB16), and one strain of cyanobacteria (Anabena oryzae Fritsch) were utilized as biofertilizer mixture in both greenhouse and field experiments. When protected plants were treated with biofertilizer mixtures, the fruit yield of biofertilized plants increased by 48% and 40% in a greenhouse and field experiment, respectively, compared to untreated plants inoculated with the protective viral strain alone. Polyacrylamide gel electrophoresis (PAGE) analysis of total nucleic acid (TNA) extracts revealed that biofertilization did not affect the accumulation of the viral satellite RNA (CARNA 5) that is required for plant protection against other destructive viral strains of CMV. The yield increment was a good compensation for the yield loss caused by the use of the protective viral strain associated with CARNA 5.