• 제목/요약/키워드: biological pathways

검색결과 698건 처리시간 0.023초

Gene Expression Profiling of the Rewarding Effect Caused by Methamphetamine in the Mesolimbic Dopamine System

  • Yang, Moon Hee;Jung, Min-Suk;Lee, Min Joo;Yoo, Kyung Hyun;Yook, Yeon Joo;Park, Eun Young;Choi, Seo Hee;Suh, Young Ju;Kim, Kee-Won;Park, Jong Hoon
    • Molecules and Cells
    • /
    • 제26권2호
    • /
    • pp.121-130
    • /
    • 2008
  • Methamphetamine, a commonly used addictive drug, is a powerful addictive stimulant that dramatically affects the CNS. Repeated METH administration leads to a rewarding effect in a state of addiction that includes sensitization, dependence, and other phenomena. It is well known that susceptibility to the development of addiction is influenced by sources of reinforcement, variable neuroadaptive mechanisms, and neurochemical changes that together lead to altered homeostasis of the brain reward system. These behavioral abnormalities reflect neuroadaptive changes in signal transduction function and cellular gene expression produced by repeated drug exposure. To provide a better understanding of addiction and the mechanism of the rewarding effect, it is important to identify related genes. In the present study, we performed gene expression profiling using microarray analysis in a reward effect animal model. We also investigated gene expression in four important regions of the brain, the nucleus accumbens, striatum, hippocampus, and cingulated cortex, and analyzed the data by two clustering methods. Genes related to signaling pathways including G-protein-coupled receptor-related pathways predominated among the identified genes. The genes identified in our study may contribute to the development of a gene modeling network for methamphetamine addiction.

Stereoisomer-specific ginsenoside 20(S)-Rg3 reverses replicative senescence of human diploid fibroblasts via Akt-mTOR-Sirtuin signaling

  • Yang, Kyeong-Eun;Jang, Hyun-Jin;Hwang, In-Hu;Hong, Eun Mi;Lee, Min-Goo;Lee, Soon;Jang, Ik-Soon;Choi, Jong-Soon
    • Journal of Ginseng Research
    • /
    • 제44권2호
    • /
    • pp.341-349
    • /
    • 2020
  • Background: The replicative senescence of human dermal fibroblasts (HDFs) is accompanied by growth arrest. In our previous study, the treatment of senescent HDFs with Rg3(S) lowered the intrinsic reactive oxygen species (ROS) levels and reversed cellular senescence by inducing peroxiredoxin-3, an antioxidant enzyme. However, the signaling pathways involved in Rg3(S)-induced senescence reversal in HDFs and the relatedness of the stereoisomer Rg3(R) in corresponding signaling pathways are not known yet. Methods: We performed senescence-associated β-galactosidase and cell cycle assays in Rg3(S)-treated senescent HDFs. The levels of ROS, adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP) as well as the mitochondrial DNA copy number, nicotinamide adenine dinucleotide (NAD)+/1,4-dihydronicotinamide adenine dinucleotide (NADH) ratio, and NAD-dependent sirtuins expression were measured and compared among young, old, and Rg3(S)-pretreated old HDFs. Major signaling pathways of phosphatidylinositol 3-kinase/Akt, 5' adenosine monophosphate-activated protein kinase (AMPK), and sirtuin 1/3, including cell cycle regulatory proteins, were examined by immunoblot analysis. Results: Ginsenoside Rg3(S) reversed the replicative senescence of HDFs by restoring the ATP level and NAD+/NADH ratio in downregulated senescent HDFs. Rg3(S) recovered directly the cellular levels of ROS and the NAD+/NADH ratio in young HDFs inactivated by rotenone. Rg3(S) mainly downregulated phosphatidylinositol 3-kinase/Akt through the inhibition of mTOR by cell cycle regulators like p53/p21 in senescent HDFs, whereas Rg3(R) did not alter the corresponding signaling pathways. Rg3(S)-activated sirtuin 3/PGC1α to stimulate mitochondrial biogenesis. Conclusion: Cellular molecular analysis suggests that Rg3(S) specifically reverses the replicative senescence of HDFs by modulating Akt-mTOR-sirtuin signaling to promote the biogenesis of mitochondria.

Small RNAs: Classification, Biogenesis, and Function

  • Kim, V. Narry
    • Molecules and Cells
    • /
    • 제19권1호
    • /
    • pp.1-15
    • /
    • 2005
  • Eukaryotes produce various types of small RNAs of 19-28 nt in length. With rapidly increasing numbers of small RNAs listed in recent years, we have come to realize how widespread their functions are and how diverse the biogenesis pathways have evolved. At the same time, we are beginning to grasp the common features and rules governing the key steps in small RNA pathways. In this review, I will summarize the current classification, biogenesis, action mechanism and function of these fascinating molecules.

Emerging functions for ANKHD1 in cancer-related signaling pathways and cellular processes

  • de Almeida, Bruna Oliveira;Machado-Neto, Joao Agostinho
    • BMB Reports
    • /
    • 제53권8호
    • /
    • pp.413-418
    • /
    • 2020
  • ANKHD1 (ankyrin repeat and KH domain containing 1) is a large protein characterized by the presence of multiple ankyrin repeats and a K-homology domain. Ankyrin repeat domains consist of widely existing protein motifs in nature, they mediate protein-protein interactions and regulate fundamental biological processes, while the KH domain binds to RNA or ssDNA and is associated with transcriptional and translational regulation. In recent years, studies containing relevant information on ANKHD1 in cancer biology and its clinical relevance, as well as the increasing complexity of signaling networks in which this protein acts, have been reported. Among the signaling pathways of interest in oncology regulated by ANKHD1 are Hippo signaling, JAK/STAT, and STMN1. The scope of the present review is to survey the current knowledge and highlight future perspectives for ANKHD1 in the malignant phenotype of cancer cells, exploring biological, functional, and clinical reports of this protein in cancer.

Genomic approaches for the understanding of aging in model organisms

  • Park, Sang-Kyu
    • BMB Reports
    • /
    • 제44권5호
    • /
    • pp.291-297
    • /
    • 2011
  • Aging is one of the most complicated biological processes in all species. A number of different model organisms from yeast to monkeys have been studied to understand the aging process. Until recently, many different age-related genes and age-regulating cellular pathways, such as insulin/IGF-1-like signal, mitochondrial dysfunction, Sir2 pathway, have been identified through classical genetic studies. Parallel to genetic approaches, genome-wide approaches have provided valuable insights for the understanding of molecular mechanisms occurring during aging. Gene expression profiling analysis can measure the transcriptional alteration of multiple genes in a genome simultaneously and is widely used to elucidate the mechanisms of complex biological pathways. Here, current global gene expression profiling studies on normal aging and age-related genetic/environmental interventions in widely-used model organisms are briefly reviewed.

New Links between mRNA Polyadenylation and Diverse Nuclear Pathways

  • Di Giammartino, Dafne Campigli;Manley, James L.
    • Molecules and Cells
    • /
    • 제37권9호
    • /
    • pp.644-649
    • /
    • 2014
  • The 3' ends of most eukaryotic messenger RNAs must undergo a maturation step that includes an endonuc-leolytic cleavage followed by addition of a polyadenylate tail. While this reaction is catalyzed by the action of only two enzymes it is supported by an unexpectedly large number of proteins. This complexity reflects the necessity of coordinating this process with other nuclear events, and growing evidence indicates that even more factors than previously thought are necessary to connect 3' processing to additional cellular pathways. In this review we summarize the current understanding of the molecular machinery involved in this step of mRNA maturation, focusing on new core and auxiliary proteins that connect polyadenylation to splicing, DNA damage, transcription and cancer.

SELENITE SUPPRESSES HYDROGEN PEROXIDE-INDUCED CELL APOPTOSIS THROUGH INHIBITION OF ASK1 AND ACTIVATION OF PI3-K/AKT PATHWAYS

  • Yoon, Sang-Oh;Chung, An-Sik
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Dietary and Medicinal Antimutgens and Anticarcinogens
    • /
    • pp.111-111
    • /
    • 2001
  • The relationship between selenium and signal molecules is not well elucidated yet. It was found that physiological concentration of selenite, less than 3 $\mu$M, reduced ASKl activity and induced of PI3-Kinase/Akt pathways in HT1080 cells. Duration of these signal molecules by selenite was much longer than that by growth factors and other stresses. The longer duration time of these signal molecules may be important to maintain normal functions against stresses.(omitted)

  • PDF

Mechanism of action of ferroptosis and its role in liver diseases

  • Dong-Oh Moon
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.159-164
    • /
    • 2023
  • Ferroptosis is a type of regulated cell death recently discovered, characterized by the accumulation of iron-dependent lipid peroxides in the cell membrane, and it involves a complex network of signaling pathways, including iron metabolism, lipid peroxidation, and redox regulation. The dysregulation of these pathways can lead to the induction of ferroptosis and the development of liver diseases, such as alcoholic liver disease, non-alcoholic fatty liver disease, viral hepatitis, and liver cancer. Studies have demonstrated that targeting key molecules involved in iron metabolism, lipid peroxidation, and redox regulation can reduce liver injury and improve liver function in different liver diseases by inhibiting ferroptosis. Thus, modulation of ferroptosis presents a promising therapeutic target for treating liver diseases. However, further research is required to gain a more comprehensive understanding of the mechanisms underlying the role of ferroptosis in liver diseases and to develop more effective and targeted treatments.

인체백혈병 U937 세포에서 부처꽃 에탄올추출물에 의한 apoptosis 유도 (Induction of Apoptosis by Ethanol Extract of Lythrum anceps (Koehne) Mak ino in Human Leuk emia U937 Cells)

  • 안은정;김철환;정진우;황병수;서민정;최경민;신수영
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2020년도 춘계학술대회
    • /
    • pp.77-77
    • /
    • 2020
  • Purple loosestrife-Lythrum anceps (Koehne) Makino is a herbaceous perennial plant belonging to the Lythraceae family. It has been used for centuries in Korea and other Asian traditional medicine. It has been showed pharmacological effects, including anti-oxidant and anti-microbial effects. However, the mechanisms underlying its anti-cancer mechanisms are not yet understood. In this study, we investigated the mechanism of apoptosis signaling pathways by ethanol extract of Lythrum anceps (Koehne) Makino (ELM) in human leukemia U937 cells. Treatment with ELM significantly inhibited cell growth in a dose-dependent manner by inducing apoptosis, as evidenced by the formation of apoptotic bodies (ApoBDs), DNA fragmentation and increased populations of sub-G1 ratio. Induction of apoptosis by ELM was connected with up-regulation of death receptor (DR) 4 and DR5, pro-apoptotic Bax protein expression and down-regulation of anti-apoptotic Bcl-2 protein, and inhibitor of apoptosis protein (IAP) family proteins (XIAP, cIAP-1, survivin), depending on dosage. This induction was associated with Bid truncation, mitochondrial dysfunction, proteolytic activation of caspases (-3, -8 and -9) and cleavage of poly(ADP-ribose) polymerase protein. Therefore, our data indicate that ELM suppresses U937 cell growth by activating the intrinsic and extrinsic apoptosis pathways, and thus may have applications as a potential source for an anti-leukemic chemotherapeutic agent.

  • PDF

A genome-wide approach to the systematic and comprehensive analysis of LIM gene family in sorghum (Sorghum bicolor L.)

  • Md. Abdur Rauf Sarkar;Salim Sarkar;Md Shohel Ul Islam;Fatema Tuz Zohra;Shaikh Mizanur Rahman
    • Genomics & Informatics
    • /
    • 제21권3호
    • /
    • pp.36.1-36.19
    • /
    • 2023
  • The LIM domain-containing proteins are dominantly found in plants and play a significant role in various biological processes such as gene transcription as well as actin cytoskeletal organization. Nevertheless, genome-wide identification as well as functional analysis of the LIM gene family have not yet been reported in the economically important plant sorghum (Sorghum bicolor L.). Therefore, we conducted an in silico identification and characterization of LIM genes in S. bicolor genome using integrated bioinformatics approaches. Based on phylogenetic tree analysis and conserved domain, we identified five LIM genes in S. bicolor (SbLIM) genome corresponding to Arabidopsis LIM (AtLIM) genes. The conserved domain, motif as well as gene structure analyses of the SbLIM gene family showed the similarity within the SbLIM and AtLIM members. The gene ontology (GO) enrichment study revealed that the candidate LIM genes are directly involved in cytoskeletal organization and various other important biological as well as molecular pathways. Some important families of regulating transcription factors such as ERF, MYB, WRKY, NAC, bZIP, C2H2, Dof, and G2-like were detected by analyzing their interaction network with identified SbLIM genes. The cis-acting regulatory elements related to predicted SbLIM genes were identified as responsive to light, hormones, stress, and other functions. The present study will provide valuable useful information about LIM genes in sorghum which would pave the way for the future study of functional pathways of candidate SbLIM genes as well as their regulatory factors in wet-lab experiments.