DOI QR코드

DOI QR Code

Mechanism of action of ferroptosis and its role in liver diseases

  • Dong-Oh Moon (Department of Biology Education, Daegu University)
  • Received : 2023.02.20
  • Accepted : 2023.04.05
  • Published : 2023.12.31

Abstract

Ferroptosis is a type of regulated cell death recently discovered, characterized by the accumulation of iron-dependent lipid peroxides in the cell membrane, and it involves a complex network of signaling pathways, including iron metabolism, lipid peroxidation, and redox regulation. The dysregulation of these pathways can lead to the induction of ferroptosis and the development of liver diseases, such as alcoholic liver disease, non-alcoholic fatty liver disease, viral hepatitis, and liver cancer. Studies have demonstrated that targeting key molecules involved in iron metabolism, lipid peroxidation, and redox regulation can reduce liver injury and improve liver function in different liver diseases by inhibiting ferroptosis. Thus, modulation of ferroptosis presents a promising therapeutic target for treating liver diseases. However, further research is required to gain a more comprehensive understanding of the mechanisms underlying the role of ferroptosis in liver diseases and to develop more effective and targeted treatments.

Keywords

References

  1. Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA, Lei P (2021) Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther 6(1): 49. doi: 10.1038/s41392-020-00428-9
  2. Zhang MW, Yang G, Zhou YF, Qian C, Mu MD, Ke Y, Qian ZM (2019) Regulating ferroportin-1 and transferrin receptor-1 expression: A novel function of hydrogen sulfide. J Cell Physiol 234(4): 3158-3169. doi: 10.1002/jcp.27431
  3. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascon S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 171(2): 273-285. doi: 10.1016/j.cell.2017.09.021
  4. Feng W, Xiao Y, Zhao C, Zhang Z, Liu W, Ma J, Ganz T, Zhang J, Liu S (2022) New Deferric Amine Compounds Efficiently Chelate Excess Iron to Treat Iron Overload Disorders and to Prevent Ferroptosis. Adv Sci (Weinh) 9(29): e2202679. doi: 10.1002/advs.202202679
  5. Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ 3rd, Kang R, Tang D (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12(8): 1425-1428. doi: 10.1080/15548627.2016.1187366
  6. Qu XF, Liang TY, Wu DG, Lai NS, Deng RM, Ma C, Li X, Li HY, Liu YZ, Shen HT, Chen G (2021) Acyl-CoA synthetase long chain family member 4 plays detrimental role in early brain injury after subarachnoid hemorrhage in rats by inducing ferroptosis. CNS Neurosci Ther 27(4): 449-463. doi: 10.1111/cns.13548
  7. Lee JY, Kim WK, Bae KH, Lee SC, Lee EW (2021) Lipid Metabolism and Ferroptosis. Biology (Basel) 10(3): 184. doi: 10.3390/biology10030184
  8. Brown HA, Murphy RC (2009) Working towards an exegesis for lipids in biology Nat Chem Biol 5(9): 602-606. doi: 10.1038/nchembio0909-602
  9. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5): 1060-1072. doi: 10.1016/j.cell.2012.03.042
  10. Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR (2016) Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA 113(34): E4966-4975. doi: 10.1073/pnas.1603244113
  11. Magtanong L, Ko PJ, To M, Cao JY, Forcina GC, Tarangelo A, Ward CC, Cho K, Patti GJ, Nomura DK, Olzmann JA, Dixon SJ (2019) Exogenous Monounsaturated Fatty Acids Promote a Ferroptosis-Resistant Cell State. Cell Chem Biol 26(3): 420-432. doi: 10.1016/j.chembiol.2018.11.016
  12. Shichiri M, Suzuki H, Isegawa Y, Tamai H (2023) Application of regulation of reactive oxygen species and lipid peroxidation to disease treatment. J Clin Biochem Nutr 72(1): 13-22. doi: 10.3164/jcbn.22-61
  13. Seibt TM, Proneth B, Conrad M (2019) Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med 133: 144-152. doi: 10.1016 /j.freeradbiomed.2018.09.014 https://doi.org/10.1016/j.freeradbiomed.2018.09.014
  14. Xu C, Sun S, Johnson T, Qi R, Zhang S, Zhang J, Yang K (2021) The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity. Cell Rep 35(11): 109235. doi: 10.1016/j.celrep.2021.109235
  15. Tang D, Chen X, Kang R, Kroemer G (2021) Ferroptosis: molecular mechanisms and health implications. Cell Res 31(2): 107-125. doi: 10.1038/s41422-020-00441-1
  16. Yang WS, Stockwell BR (2016) Ferroptosis: Death by Lipid Peroxidation. Trends Cell Biol 26(3): 165-176. doi: 10.1016/j.tcb.2015.10.014
  17. Song X, Long D (2020) Nrf2 and Ferroptosis: A New Research Direction for Neurodegenerative Diseases. Front Neurosci 14: 267. doi: 10.3389/fnins.2020.00267
  18. Sato H, Tamba M, Ishii T, Bannai S (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274(17): 11455-11458. doi: 10.1074/jbc.274.17.11455
  19. Conrad M, Sato H (2012) The oxidative stress-inducible cystine/glutamate antiporter, system xc-: cystine supplier and beyond. Amino Acids 42(1): 231-246. doi: 10.1007/s00726-011-0867-5
  20. Zhu J, Xiong Y, Zhang Y, Wen J, Cai N, Cheng K, Liang H, Zhang W (2020) The Molecular Mechanisms of Regulating Oxidative StressInduced Ferroptosis and Therapeutic Strategy in Tumors. Oxid Med Cell Longev 2020: 8810785. doi: 10.1155/2020/8810785. eCollection 2020
  21. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1-2): 317-331. doi: 10.1016/j.cell.2013.12.010
  22. Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R, Gu W (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520(7545): 57-62. doi: 10.1038/nature14344
  23. Doll S, Conrad M (2017) Iron and ferroptosis: A still ill-defined liaison. IUBMB Life 69(6): 423-434. doi: 10.1002/iub.1616
  24. Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X (2016) Ferroptosis is an autophagic cell death process. Cell Res 26(9): 1021-1032. doi: 10.1038/cr.2016.95
  25. Angeli JPF, Shah R, Pratt DA, Conrad M (2017) Ferroptosis Inhibition: Mechanisms and Opportunities. Trends Pharmacol Sci 38(5): 489-498. doi: 10.1016/j.tips.2017.02.005
  26. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64(1): 73-84. doi: 10.1002/hep.28431
  27. Cichoz-Lach H, Michalak A (2014) Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol 20(25): 8082-8091. doi: 10.3748/wjg.v20.i25.8082
  28. Tilg H, Moschen AR (2010) Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52(5): 1836-1846. doi: 10.1002/hep.24001
  29. Bonkovsky HL, Jawaid Q, Tortorelli K, LeClair P, Cobb J, Lambrecht RW, Banner BF (1999) Non-alcoholic steatohepatitis and iron: increased prevalence of mutations of the HFE gene in non-alcoholic steatohepatitis. J Hepatol 31(3): 421-429. doi: 10.1016/s0168-8278(99)80032-4
  30. You H, Wang L, Bu F, Meng H, Huang C, Fang G, Li J (2022) Ferroptosis: Shedding Light on Mechanisms and Therapeutic Opportunities in Liver Diseases. Cells 11(20): 3301. doi: 10.3390/cells11203301
  31. Wei S, Qiu T, Wang N, Yao X, Jiang L, Jia X, Tao Y, Zhang J, Zhu Y, Yang G, Liu X, Liu S, Sun X (2020) Ferroptosis mediated by the interaction between Mfn2 and IREα promotes arsenic-induced nonalcoholic steatohepatitis. Environ Res 188: 109824. doi: 10.1016/j.envres.2020.109824
  32. Slocum SL, Skoko JJ, Wakabayashi N, Aja S, Yamamoto M, Kensler TW, Chartoumpekis DV (2016) Keap1/Nrf2 pathway activation leads to a repressed hepatic gluconeogenic and lipogenic program in mice on a high-fat diet. Arch Biochem Biophys 591: 57-65. doi: 10.1016/j.abb.2015.11.040
  33. Gao G, Xie Z, Li EW, Yuan Y, Fu Y, Wang P, Zhang X, Qiao Y, Xu J, Holscher C, Wang H, Zhang (2021) Dehydroabietic acid improves nonalcoholic fatty liver disease through activating the Keap1/Nrf2-ARE signaling pathway to reduce ferroptosis. J Nat Med 75(3): 540-552. doi: 10.1007/s11418-021-01491-4
  34. Liu B, Yi W, Mao X, Yang L, Rao C (2021) Enoyl coenzyme A hydratase 1 alleviates nonalcoholic steatohepatitis in mice by suppressing hepatic ferroptosis. Am J Physiol Endocrinol Metab 320(5): E925-E937. doi: 10.1152/ajpendo.00614.2020
  35. Patel PV, Flamm SL (2023) Alcohol-Related Liver Disease Including New Developments. Clin Liver Dis 27(1): 157-172. doi: 10.1016/j.cld.2022.08.005
  36. Lieber CS (2005) Metabolism of alcohol. Clin Liver Dis 9(1): 1-35. doi: 10.1016/j.cld.2004.09.001
  37. Wang Y, Yang L, Zhang X, Fan J, Zhang F, Zhang Y, Yang X (2022) ML162, a potent and selective GPX4 activator, alleviates alcohol-induced liver injury and fibrosis via inhibiting ferroptosis. Redox Biology 49: 102236. doi: 10.1016/j.redox.2021.102236
  38. Lavanchy D (2004) Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J Viral Hepat 11(2): 97-107. doi:10.1046/j.1365-2893.2003.00487.x. PMID: 14996343
  39. Lavanchy D (2004) Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. Journal of viral hepatitis 11(2): 97-107. PMID: 14996343
  40. Yamane D, Hayashi Y, Matsumoto M, Nakanishi H, Imagawa H, Kohara M, Lemon SM, Ichi I (2022) FADS2-dependent fatty acid desaturation dictates cellular sensitivity to ferroptosis and permissiveness for hepatitis C virus replication. Cell Chem Biol 29(5): 799-810.e4. doi: 10.1016/j.chembiol.2021.07.022
  41. Zhang Q, Qu Y, Zhang Q, Li F, Li B, Li Z, Dong Y, Lu L, Cai X (2022) Exosomes derived from hepatitis B virus-infected hepatocytes promote liver fibrosis via miR-222/TFRC axis. Cell Biol Toxicol 34978008. doi: 10.1007/s10565-021-09684-z
  42. Huang Y, Wang S, Ke A, Guo K (2023) Ferroptosis and its interaction with tumor immune microenvironment in liver cancer. Biochim Biophys Acta Rev Cancer 1878(1): 188848. doi: 10.1016/j.bbcan.2022.188848
  43. Louandre C, Marcq I, Bouhlal H, Lachaier E, Godin C, Saidak Z, Francois C, Chatelain D, Debuysscher V, Barbare JC, Chauffert B, Galmiche A (2015) The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett 28: 356(2 Pt B): 971-977. doi: 10.1016/j.canlet.2014.11.014
  44. Sun Y, He L, Wang T, Hua W, Qin H, Wang J, Wang L, Gu W, Li T, Li N, Liu X, Chen F, Tang L (2020) Activation of p62-Keap1-Nrf2 Pathway Protects 6-Hydroxydopamine-Induced Ferroptosis in Dopaminergic Cells. Mol Neurobiol 57(11): 4628-4641. doi: 10.1007/s12035-020-02049-3
  45. Sun X, Niu X, Chen R, He W, Chen D, Kang R, Tang D (2016) Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology 64(2): 488-500. doi: 10.1002/hep.28574