Small RNAs: Classification, Biogenesis, and Function

  • Kim, V. Narry (Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University)
  • Received : 2005.02.21
  • Accepted : 2005.02.23
  • Published : 2005.02.28

Abstract

Eukaryotes produce various types of small RNAs of 19-28 nt in length. With rapidly increasing numbers of small RNAs listed in recent years, we have come to realize how widespread their functions are and how diverse the biogenesis pathways have evolved. At the same time, we are beginning to grasp the common features and rules governing the key steps in small RNA pathways. In this review, I will summarize the current classification, biogenesis, action mechanism and function of these fascinating molecules.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Ambros, V. (2004) The functions of animal microRNAs. Nature 431, 350-.355 https://doi.org/10.1038/nature02871
  2. Ambros, V., Bartel, B., Bartel, D. P., Burge, C. B., Carrington, J. C., et al. (2003a) A uniform system for microRNA annotation. RNA 9, 277-.279
  3. Ambros, V., Lee, R. C., Lavanway, A., Williams, P. T., and Jewell, D. (2003b) MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr. Biol. 13, 807-.818 https://doi.org/10.1016/S0960-9822(02)01380-5
  4. Aravin, A. A., Naumova, N. M., Tulin, A. V., Vagin, V. V., Rozovsky, Y. M. et al. (2001) Double-stranded RNAmediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol 11, 1017-.1027 https://doi.org/10.1016/S0960-9822(01)00299-8
  5. Aravin, A. A., Lagos-Quintana, M., Yalcin, A., Zavolan, M., Marks, D., et al. (2003) The small RNA profile during Drosophila melanogaster development. Dev. Cell. 5, 337-.350 https://doi.org/10.1016/S1534-5807(03)00202-8
  6. Aravin, A. A., Klenov, M. S., Vagin, V. V., Bantignies, F., Cavalli, G., et al. (2004) Dissection of a natural RNA silencing process in the Drosophila melanogaster germ line. Mol. Cell. Biol. 24, 6742-.6750 https://doi.org/10.1128/MCB.24.15.6742-6750.2004
  7. Aukerman, M. J. and Sakai, H. (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15, 2730-.2741 https://doi.org/10.1105/tpc.016238
  8. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-.297 https://doi.org/10.1016/S0092-8674(04)00045-5
  9. Bartel, D. P. and Chen, C. Z. (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 5, 396-.400
  10. Baulcombe, D. (2004) RNA silencing in plants. Nature 431, 356-.363 https://doi.org/10.1038/nature02874
  11. Baulcombe, D. C. and Molnar, A. (2004) Crystal structure of p19--a universal suppressor of RNA silencing. Trends Biochem. Sci. 29, 279-.281 https://doi.org/10.1016/j.tibs.2004.04.007
  12. Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363-.366 https://doi.org/10.1038/35053110
  13. Bohnsack, M. T., Czaplinski, K., and Gorlich, D. (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185-.191 https://doi.org/10.1261/rna.5167604
  14. Bollman, K. M., Aukerman, M. J., Park, M. Y., Hunter, C., Berardini, T. Z., et al. (2003) HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130, 1493-.1504 https://doi.org/10.1242/dev.00362
  15. Boutet, S., Vazquez, F., Liu, J., Beclin, C., Fagard, M., et al. (2003) Arabidopsis HEN1. A Genetic Link between Endogenous miRNA Controlling Development and siRNA Controlling Transgene Silencing and Virus Resistance. Curr. Biol. 13, 843-.848 https://doi.org/10.1016/S0960-9822(02)01404-5
  16. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., and Cohen, S. M. (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25-.36 https://doi.org/10.1016/S0092-8674(03)00231-9
  17. Cai, X., Hagedorn, C. H., and Cullen, B. R. (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957-. 1966 https://doi.org/10.1261/rna.7135204
  18. Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., et al. (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 99, 15524-.15529
  19. Calin, G. A., Liu, C. G., Sevignani, C., Ferracin, M., Felli, N., et al. (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl. Acad. Sci. USA 101, 11755-.11760
  20. Caplen, N. J., Parrish, S., Imani, F., Fire, A., and Morgan, R. A. (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA 98, 9742-.9747
  21. Caudy, A.A., Myers, M., Hannon, G.J. and Hammond, S.M. (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev, 16, 2491-.2496 https://doi.org/10.1101/gad.1025202
  22. Chalker, D. L. and Yao, M. C. (2001) Nongenic, bidirectional transcription precedes and may promote developmental DNA deletion in Tetrahymena thermophila. Genes Dev. 15, 1287-.1298 https://doi.org/10.1101/gad.884601
  23. Chan, S. W., Zilberman, D., Xie, Z., Johansen, L. K., Carrington, J. C. et al. (2004) RNA silencing genes control de novo DNA methylation. Science 303, 1336 https://doi.org/10.1126/science.1095989
  24. Chang, S., Johnston, R. J., Jr., Frokjaer-Jensen, C., Lockery, S., and Hobert, O. (2004) MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature 430, 785-.789 https://doi.org/10.1038/nature02752
  25. Chapman, E. J., Prokhnevsky, A. I., Gopinath, K., Dolja, V. V., and Carrington, J. C. (2004) Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev. 18, 1179-.1186 https://doi.org/10.1101/gad.1201204
  26. Chen, C. Z., Li, L., Lodish, H. F., and Bartel, D. P. (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83-.86 https://doi.org/10.1126/science.1091903
  27. Chen, X. (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303, 2022-.2025 https://doi.org/10.1126/science.1088060
  28. Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., and Hannon, G. J. (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231-.235 https://doi.org/10.1038/nature03049
  29. Djikeng, A., Shi, H., Tschudi, C., and Ullu, E. (2001) RNA interference in Trypanosoma brucei: cloning of small interfering RNAs provides evidence for retroposon-derived 24-26-nucleotide RNAs. RNA 7, 1522-.1530
  30. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., et al. (2001a) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494-.498 https://doi.org/10.1038/35078107
  31. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W., and Tuschl, T. (2001b) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877-.6888 https://doi.org/10.1093/emboj/20.23.6877
  32. Elbashir, S. M., Harborth, J., Weber, K., and Tuschl, T. (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26, 199-.213 https://doi.org/10.1016/S1046-2023(02)00023-3
  33. Fagard, M., Boutet, S., Morel, J. B., Bellini, C., and Vaucheret, H. (2000) AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc. Natl. Acad. Sci. USA 97, 11650-.11654
  34. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-.811 https://doi.org/10.1038/35888
  35. Gil, J. and Esteban, M. (2000) Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis 5, 107-.114 https://doi.org/10.1023/A:1009664109241
  36. Gregory, R. I., Yan, K. P., Amuthan, G., Chendrimada, T., Doratotaj, B., et al. (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432, 235-.240 https://doi.org/10.1038/nature03120
  37. Griffiths-Jones, S. (2004) The microRNA Registry. Nucleic Acids Res. 32, D109-.111
  38. Grishok, A., Pasquinelli, A. E., Conte, D., Li, N., Parrish, S., et al. (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23-.34 https://doi.org/10.1016/S0092-8674(01)00431-7
  39. Hall, I. M., Shankaranarayana, G. D., Noma, K., Ayoub, N., Cohen, A., et al. (2002) Establishment and maintenance of a heterochromatin domain. Science 297, 2232-.2237 https://doi.org/10.1126/science.1076466
  40. Hamilton, A., Voinnet, O., Chappell, L., and Baulcombe, D. (2002) Two classes of short interfering RNA in RNA silencing. EMBO J. 21, 4671-.4679 https://doi.org/10.1093/emboj/cdf464
  41. Han, J., Lee, Y., Yeom, K. H., Kim, Y. K., Jin, H., et al. (2004a) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016-.3027 https://doi.org/10.1101/gad.1262504
  42. Han, M. H., Goud, S., Song, L., and Fedoroff, N. (2004b) The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc. Natl. Acad. Sci. USA 101, 1093-.1098
  43. Hannon, G. J. and Rossi, J. J. (2004) Unlocking the potential of the human genome with RNA interference. Nature 431, 371-.378 https://doi.org/10.1038/nature02870
  44. Herr, A. J., Jensen, M. B., Dalmay, T., and Baulcombe, D. C. (2005) RNA Polymerase IV Directs Silencing of Endogenous DNA. Science Feb 3; [Epub ahead of print]
  45. Houbaviy, H. B., Murray, M. F., and Sharp, P. A. (2003) Embryonic stem cell-specific MicroRNAs. Dev. Cell. 5, 351-.358 https://doi.org/10.1016/S1534-5807(03)00202-8
  46. Hutvagner, G., McLachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T., et al. (2001) A cellular function for the RNAinterference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834-.838 https://doi.org/10.1126/science.1062961
  47. Ishizuka, A., Siomi, M. C., and Siomi, H. (2002) A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev. 16, 2497-.2508 https://doi.org/10.1101/gad.1022002
  48. Kawasaki, H. and Taira, K. (2004) Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 431, 211-.217 https://doi.org/10.1038/nature02889
  49. Kennerdell, J. R. and Carthew, R. W. (1998) Use of dsRNAmediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017-.1026 https://doi.org/10.1016/S0092-8674(00)81725-0
  50. Kennerdell, J. R., Yamaguchi, S., and Carthew, R. W. (2002) RNAi is activated during Drosophila oocyte maturation in a manner dependent on aubergine and spindle-E. Genes Dev, 16, 1884-.1889 https://doi.org/10.1101/gad.990802
  51. Ketting, R. F. and Plasterk, R. H. (2004) What''s new about RNAi? Meeting on siRNAs and miRNAs. EMBO Rep. 5, 762-.765 https://doi.org/10.1038/sj.embor.7400207
  52. Ketting, R. F., Haverkamp, T. H., van Luenen, H. G., and Plasterk, R. H. (1999) Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133-.141 https://doi.org/10.1016/S0092-8674(00)81645-1
  53. Ketting, R. F., Fischer, S. E., Bernstein, E., Sijen, T., Hannon, G. J., et al. (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654-.2659 https://doi.org/10.1101/gad.927801
  54. Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209-.216 https://doi.org/10.1016/S0092-8674(03)00801-8
  55. Knight, S. W. and Bass, B. L. (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293, 2269-.2271 https://doi.org/10.1126/science.1062039
  56. Kumar, M. and Carmichael, G. G. (1998) Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol. Mol. Biol. Rev. 62, 1415-.1434
  57. Kurihara, Y. and Watanabe, Y. (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc. Natl. Acad. Sci. USA 101, 12753-.12758
  58. Kuwabara, T., Hsieh, J., Nakashima, K., Taira, K., and Gage, F. H. (2004) A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116, 779-.793 https://doi.org/10.1016/S0092-8674(04)00248-X
  59. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001) Identification of novel genes coding for small expressed RNAs. Science 294, 853-.858 https://doi.org/10.1126/science.1064921
  60. Lakatos, L., Szittya, G., Silhavy, D., and Burgyan, J. (2004) Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J. 23, 876-.884 https://doi.org/10.1038/sj.emboj.7600096
  61. Landthaler, M., Yalcin, A., and Tuschl, T. (2004) The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr. Biol. 14, 2162-.2167 https://doi.org/10.1016/j.cub.2003.12.011
  62. Lau, N. C., Lim, L. P., Weinstein, E. G., and Bartel, D. P. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858-.862 https://doi.org/10.1126/science.1065062
  63. Lecellier, C. H. and Voinnet, O. (2004) RNA silencing: no mercy for viruses? Immunol. Rev. 198, 285-.303 https://doi.org/10.1111/j.0105-2896.2004.00128.x
  64. Lee, R. C. and Ambros, V. (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862-.864 https://doi.org/10.1126/science.1065329
  65. Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-.854 https://doi.org/10.1016/0092-8674(93)90529-Y
  66. Lee, Y., Jeon, K., Lee, J. T., Kim, S., and Kim, V. N. (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663-.4670 https://doi.org/10.1093/emboj/cdf476
  67. Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., et al. (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-.419 https://doi.org/10.1038/nature01957
  68. Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., et al. (2004a) V. Narry Kim 13 MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051-.4060 https://doi.org/10.1038/sj.emboj.7600385
  69. Lee, Y. S., Nakahara, K., Pham, J. W., Kim, K., He, Z., et al. (2004b) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69-.81 https://doi.org/10.1016/S0092-8674(04)00261-2
  70. Lewis, B. P., Burge, C. B., and Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-.20 https://doi.org/10.1016/j.cell.2004.12.035
  71. Lingel, A., Simon, B., Izaurralde, E., and Sattler, M. (2004) Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain. Nat. Struct. Mol. Biol. 11, 576-577 https://doi.org/10.1038/nsmb777
  72. Lippman, Z. and Martienssen, R. (2004) The role of RNA interference in heterochromatic silencing. Nature 431, 364-370 https://doi.org/10.1038/nature02875
  73. Lippman, Z., Gendrel, A. V., Black, M., Vaughn, M. W., Dedhia, N., et al. (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471-476 https://doi.org/10.1038/nature02651
  74. Liu, Q., Rand, T. A., Kalidas, S., Du, F., Kim, H. E., et al. (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921-1925 https://doi.org/10.1126/science.1088710
  75. Liu, J., Carmell, M. A., Rivas, F. V., Marsden, C. G., Thomson, J. M., et al. (2004a) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437-1441 https://doi.org/10.1126/science.1102513
  76. Liu, Y., Mochizuki, K., and Gorovsky, M. A. (2004b) Histone H3 lysine 9 methylation is required for DNA elimination in developing macronuclei in Tetrahymena. Proc. Natl. Acad. Sci. USA 101, 1679-1684
  77. Llave, C., Kasschau, K. D., Rector, M. A., and Carrington, J. C. (2002a) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14, 1605-1619 https://doi.org/10.1105/tpc.003210
  78. Llave, C., Xie, Z., Kasschau, K. D., and Carrington, J. C. (2002b) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053-2056 https://doi.org/10.1126/science.1076311
  79. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., and Kutay, U. (2004) Nuclear export of microRNA precursors. Science 303, 95-98 https://doi.org/10.1126/science.1090599
  80. Ma, J. B., Ye, K., and Patel, D. J. (2004) Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429, 318-322 https://doi.org/10.1038/nature02519
  81. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., and Tuschl, T. (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563-574 https://doi.org/10.1016/S0092-8674(02)00908-X
  82. Matzke, M. A. and Birchler, J. A. (2005) RNAi-mediated pathways in the nucleus. Nat. Rev. Genet. 6, 24-35 https://doi.org/10.1038/nrg1500
  83. Meister, G. and Tuschl, T. (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343-349 https://doi.org/10.1038/nature02873
  84. Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., et al. (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185-197 https://doi.org/10.1016/j.molcel.2004.07.007
  85. Mette, M. F., van der Winden, J., Matzke, M., and Matzke, A. J. (2002) Short RNAs can identify new candidate transposable element families in Arabidopsis. Plant Physiol. 130, 6-9 https://doi.org/10.1104/pp.007047
  86. Metzler, M., Wilda, M., Busch, K., Viehmann, S., and Borkhardt, A. (2004) High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39, 167-169 https://doi.org/10.1002/gcc.10316
  87. Meyer, E. and Garnier, O. (2002) Non-Mendelian inheritance and homology-dependent effects in ciliates. Adv. Genet. 46, 305-337 https://doi.org/10.1016/S0065-2660(02)46011-7
  88. Mochizuki, K. and Gorovsky, M. A. (2004a) Conjugationspecific small RNAs in Tetrahymena have predicted properties of scan (scn) RNAs involved in genome rearrangement. Genes Dev. 18, 2068-2073 https://doi.org/10.1101/gad.1219904
  89. Mochizuki, K. and Gorovsky, M. A. (2004b) Small RNAs in genome rearrangement in Tetrahymena. Curr. Opin. Genet. Dev. 14, 181-187 https://doi.org/10.1016/j.gde.2004.01.004
  90. Mochizuki, K., Fine, N. A., Fujisawa, T., and Gorovsky, M. A. (2002) Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell 110, 689-699 https://doi.org/10.1016/S0092-8674(02)00909-1
  91. Morris, K. V., Chan, S. W., Jacobsen, S. E., and Looney, D. J. (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305, 1289-1292 https://doi.org/10.1126/science.1101372
  92. Moss, E. G., Lee, R. C., and Ambros, V. (1997) The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88, 637-646 https://doi.org/10.1016/S0092-8674(00)81906-6
  93. Mourelatos, Z., Dostie, J., Paushkin, S., Sharma, A., Charroux, B., et al. (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 16, 720-728 https://doi.org/10.1101/gad.974702
  94. Mourrain, P., Beclin, C., Elmayan, T., Feuerbach, F., Godon, C., et al. (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101, 533-542 https://doi.org/10.1016/S0092-8674(00)80863-6
  95. Murchison, E. P. and Hannon, G. J. (2004) miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr. Opin. Cell. Biol. 16, 223-229 https://doi.org/10.1016/j.ceb.2004.04.003
  96. Napoli, C., Lemieux, C., and Jorgensen, R. (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279-289 https://doi.org/10.1105/tpc.2.4.279
  97. Ngo, H., Tschudi, C., Gull, K., and Ullu, E. (1998) Doublestranded RNA induces mRNA degradation in Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 95, 14687-14692
  98. Noma, K., Sugiyama, T., Cam, H., Verdel, A., Zofall, M., et al. (2004) RITS acts in cis to promote RNA interferencemediated transcriptional and post-transcriptional silencing. Nat. Genet. 36, 1174-1180 https://doi.org/10.1038/ng1452
  99. Okamura, K., Ishizuka, A., Siomi, H., and Siomi, M. C. (2004) Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655-1666 https://doi.org/10.1101/gad.1210204
  100. Olsen, P. H. and Ambros, V. (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671-680 https://doi.org/10.1006/dbio.1999.9523
  101. Pal-Bhadra, M., Bhadra, U., and Birchler, J. A. (2002) RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol. Cell 9, 315-327 https://doi.org/10.1016/S1097-2765(02)00440-9
  102. Pal-Bhadra, M., Leibovitch, B. A., Gandhi, S. G., Rao, M., Bhadra, U., et al. (2004) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi ma14 Small RNAs: Classification, Biogenesis, and Function chinery. Science 303, 669-672 https://doi.org/10.1126/science.1092653
  103. Papp, I., Mette, M. F., Aufsatz, W., Daxinger, L., Schauer, S. E., et al. (2003) Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol. 132, 1382-1390 https://doi.org/10.1104/pp.103.021980
  104. Park, W., Li, J., Song, R., Messing, J., and Chen, X. (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol. 12, 1484-1495 https://doi.org/10.1016/S0960-9822(02)01017-5
  105. Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H. L., and Poethig, R. S. (2004) SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of transacting siRNAs in Arabidopsis. Genes Dev. 18, 2368-2379 https://doi.org/10.1101/gad.1231804
  106. Pfeffer, S., Zavolan, M., Grasser, F. A., Chien, M., Russo, J. J., et al. (2004) Identification of virus-encoded microRNAs. Science, 304, 734-736 https://doi.org/10.1126/science.1096781
  107. Reinhart, B. J. and Bartel, D. P. (2002) Small RNAs correspond to centromere heterochromatic repeats. Science 297, 1831 https://doi.org/10.1126/science.1077183
  108. Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., et al. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901-906 https://doi.org/10.1038/35002607
  109. Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., and Bartel, D. P. (2002) MicroRNAs in plants. Genes Dev. 16, 1616-1626 https://doi.org/10.1101/gad.1004402
  110. Schramke, V. and Allshire, R. (2003) Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science 301, 1069-1074 https://doi.org/10.1126/science.1086870
  111. Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., et al. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199-208 https://doi.org/10.1016/S0092-8674(03)00759-1
  112. Silhavy, D., Molnar, A., Lucioli, A., Szittya, G., Hornyik, C., et al. (2002) A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide doublestranded RNAs. EMBO J. 21, 3070-3080 https://doi.org/10.1093/emboj/cdf312
  113. Slack, F. J., Basson, M., Liu, Z., Ambros, V., Horvitz, H. R., et al. (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell 5, 659-669 https://doi.org/10.1016/S1097-2765(00)80245-2
  114. Song, J. J., Liu, J., Tolia, N. H., Schneiderman, J., Smith, S. K., et al. (2003) The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Biol. 10, 1026-1032 https://doi.org/10.1038/nsb1016
  115. Song, J. J., Smith, S. K., Hannon, G. J., and Joshua-Tor, L. (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434-1437 https://doi.org/10.1126/science.1102514
  116. Suh, M. R., Lee, Y., Kim, J. Y., Kim, S. K., Moon, S. H., et al. (2004) Human embryonic stem cells express a unique set of microRNAs. Dev. Biol. 270, 488-498 https://doi.org/10.1016/j.ydbio.2004.02.019
  117. Sunkar, R. and Zhu, J. K. (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16, 2001-2019 https://doi.org/10.1105/tpc.104.022830
  118. Tabara, H., Sarkissian, M., Kelly, W. G., Fleenor, J., Grishok, A., et al. (1999) The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123-132 https://doi.org/10.1016/S0092-8674(00)81644-X
  119. Tam, W. (2001) Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA. Gene 274, 157-167 https://doi.org/10.1016/S0378-1119(01)00612-6
  120. Tam, W., Hughes, S. H., Hayward, W. S., and Besmer, P. (2002) Avian bic, a gene isolated from a common retroviral site in avian leukosis virus-induced lymphomas that encodes a noncoding RNA, cooperates with c-myc in lymphomagenesis and erythroleukemogenesis. J. Virol. 76, 4275-4286 https://doi.org/10.1128/JVI.76.9.4275-4286.2002
  121. Taverna, S. D., Coyne, R. S., and Allis, C. D. (2002) Methylation of histone h3 at lysine 9 targets programmed DNA elimination in tetrahymena. Cell 110, 701-711 https://doi.org/10.1016/S0092-8674(02)00941-8
  122. Telfer, A. and Poethig, R. S. (1998) HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana. Development 125, 1889-1898
  123. Tomari, Y., Du, T., Haley, B., Schwarz, D. S., Bennett, R., et al. (2004a) RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 116, 831-841 https://doi.org/10.1016/S0092-8674(04)00218-1
  124. Tomari, Y., Matranga, C., Haley, B., Martinez, N., and Zamore, P. D. (2004b) A protein sensor for siRNA asymmetry. Science 306, 1377-1380 https://doi.org/10.1126/science.1102755
  125. van der Krol, A. R., Mur, L. A., Beld, M., Mol, J. N., and Stuitje, A.R. (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2, 291-299 https://doi.org/10.1105/tpc.2.4.291
  126. Vargason, J. M., Szittya, G., Burgyan, J., and Tanaka Hall, T. M. (2003) Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115, 799-811 https://doi.org/10.1016/S0092-8674(03)00984-X
  127. Vastenhouw, N. L. and Plasterk, R. H. (2004) RNAi protects the Caenorhabditis elegans germline against transposition. Trends Genet. 20, 314-319 https://doi.org/10.1016/j.tig.2004.04.011
  128. Vazquez, F., Gasciolli, V., Crete, P., and Vaucheret, H. (2004a) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr. Biol. 14, 346-351 https://doi.org/10.1016/j.cub.2003.12.005
  129. Vazquez, F., Vaucheret, H., Rajagopalan, R., Lepers, C., Gasciolli, V., et al. (2004b) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol. Cell 16, 69-79 https://doi.org/10.1016/j.molcel.2004.09.028
  130. Verdel, A., Jia, S., Gerber, S., Sugiyama, T., Gygi, S., et al. (2004) RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672-676 https://doi.org/10.1126/science.1093686
  131. Volpe, T. A., Kidner, C., Hall, I. M., Teng, G., Grewal, S. I., et al. (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833-1837 https://doi.org/10.1126/science.1074973
  132. Wianny, F. and Zernicka-Goetz, M. (2000) Specific interference with gene function by double-stranded RNA in early mouse development. Nat. Cell. Biol. 2, 70-75 https://doi.org/10.1038/35000016
  133. Wightman, B., Ha, I., and Ruvkun, G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin- 4 mediates temporal pattern formation in C. elegans. Cell 75, 855-862 https://doi.org/10.1016/0092-8674(93)90530-4
  134. Xie, Z., Johansen, L. K., Gustafson, A. M., Kasschau, K. D., Lellis, A. D., et al. (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, E104 https://doi.org/10.1371/journal.pbio.0020104
  135. Yan, K. S., Yan, S., Farooq, A., Han, A., Zeng, L., et al. (2003) Structure and conserved RNA binding of the PAZ domain. Nature 426, 468-474 https://doi.org/10.1038/nature02129
  136. Yang, S., Tutton, S., Pierce, E., and Yoon, K. (2001) Specific V. Narry Kim 15 double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Mol. Cell. Biol. 21, 7807-7816 https://doi.org/10.1128/MCB.21.22.7807-7816.2001
  137. Ye, K., Malinina, L., and Patel, D. J. (2003) Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature 426, 874-878 https://doi.org/10.1038/nature02213
  138. Yekta, S., Shih, I. H., and Bartel, D. P. (2004) MicroRNAdirected cleavage of HOXB8 mRNA. Science 304, 594-596 https://doi.org/10.1126/science.1097434
  139. Yi, R., Qin, Y., Macara, I. G., and Cullen, B. R. (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011-3016 https://doi.org/10.1101/gad.1158803
  140. Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., et al. (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932-935 https://doi.org/10.1126/science.1107130
  141. Zeng, Y., Wagner, E. J., and Cullen, B. R. (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327-1333 https://doi.org/10.1016/S1097-2765(02)00541-5
  142. Zilberman, D., Cao, X., and Jacobsen, S. E. (2003) ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299, 716-719 https://doi.org/10.1126/science.1079695
  143. Zilberman, D., Cao, X., Johansen, L. K., Xie, Z., Carrington, J. C., et al. (2004) Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr. Biol. 14, 1214-1220 https://doi.org/10.1016/j.cub.2004.06.055