• Title/Summary/Keyword: biological macromolecules

Search Result 62, Processing Time 0.023 seconds

A Study on the Physical Properties of Functional LB Monolayers (기능성 LB단분자막의 물성에 관한 연구)

  • Choi, Young-Il;Cho, Su-Young;Kim, Young-Geun;Song, Jin-Won;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.853-856
    • /
    • 2004
  • Monolayers of lipids on a water surface have attracted much interest as models of biological membranes but also as precursors of multilayer systems promising many technical applications. Until now, many methodologies have been developed in order to gain a better understand. Photoisomerization in monolayers of a novel azobenzene compound, azobenzene dendrimer, was investigated for the first time by means of the absorption spectrum and Maxwell displacement current (MDC) technique. Dendrimers are well-defined macromolecules exhibiting a tree-like structure, first derived by the cascade molecule approach. According to the absorption spectrum, trans-to-cis conversion ratio was estimated to the third generation of azobenzene dendrimer deposited onto a glass substrate. Temperature-dependent induced charge with trans-cis isomerization was also measured by means of MDC technique.

  • PDF

Regulation of Intercellular Protein and RNA Movement (생체고분자 단백질 및 RNA의 세포간 이동 조절)

  • Moon, Ju-Yeon;Jung, Jin-Hee;Rim, Yeong-Gil;Datla, Raju;Joliot, Alain;Jackson, David;Kim, Jae-Yean
    • Journal of Plant Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.129-137
    • /
    • 2007
  • Intercellular signaling is a crucial biological process for the coordination of cell differentiation, organ development and whole plant physiology. The intercellular movement of macromolecule signals such as proteins and RNAs has emerged as a novel mechanism of cell-to-cell communication in plant. Plasmodesmata, which are intercellular symplasmic channels, provide a key pathway for cell-to-cell trafficking of regulatory proteins / RNAs. This review specifically focuses on integrating the recent understanding on non-cell autonomous macromolecules, their function and regulatory mechanisms of intercellular trafficking through plasmodesmata.

Photo Displacement Properties of Nano structure Organic Ultra Thin Films (나노구조 덴드리머의 광변위특성)

  • Song, Jin-Won;Choi, Young-Il;Cho, Su-Young;Kim, Deok-Tae;Lee, Woo-Ki;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11b
    • /
    • pp.23-26
    • /
    • 2004
  • Monolayers of lipids on a water surface have attracted much interest as models of biological membranes, but also as precursors of multilayer systems promising many technical applications. Until now, many methodologies have been developed in order to gain a better understand. Photoisomerization in monolayers of a novel azobenzene compound, azobenzene dendrimer, was investigated for the first time by means of the absorption spectrum and Maxwell displacement current(MDC) technique. Dendrimers are well-defined macromolecules exhibiting a tree-like structure, first derived by the cascade molecule approach According to the absorption spectrum, trans-to-cis conversion ratio was estimated to the third generation of azobenzene dendrimer deposited onto a glass substrate. Temperature-dependent induced charge with trans-cis isomerization was also measured by means of MDC technique.

  • PDF

Enhancement of Heparin and Heparin Disaccharide Absorption by the Phytolacca americana Saponins

  • Cho, So-Yean;Sim, Joon-Soo;Kang, Sam-Sik;Jeong, Choon-Sik;Linhardt, Robert-J;Kim, Yeong-Shik
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1102-1108
    • /
    • 2003
  • We studied the effects of phytolaccosides, saponins from Phytolacca americana, on the intestinal absorption of heparin in vitro and in vivo. The absorption enhancing activity of these compounds (phytolaccosides B, $D_2$, E, F, G and I) was determined by changes in transepithelial electrical resistance (TEER) and the transport amount of heparin disaccharide, the major repeating unit of heparin, across Caco-2 cell monolayers. With the exception of phytolaccoside G, all of them decreased TEER values and increased the permeability in a dose-dependent and time-dependent manner. In vitro, phytolaccosides B,$D_2$, and E showed significant absorption enhancing activities, while effects by phytolaccoside F and I were mild. In vivo, phytolaccoside E increased the activated partial thromboplastin time (APTT) and thrombin time, indicating that phytolaccoside E modulated the transport of heparin in intestinal route. Our results suggest that a series of phytolaccosides from Phytolacca americana can be applied as pharmaceutical excipients to improve the permeability of macromolecules and hydrophilic drugs having difficulty in absorption across the intestinal epithelium.

Photo Displacement Properties of Nano structure Organic Ultra Thin Films (나노구조 유기초박막의 광변위특성)

  • Song, Jin-Won;Choi, Young-Il;Cho, Su-Young;Kim, Young-Geun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.468-471
    • /
    • 2004
  • Monolayers of lipids on a water surface have attracted much interest as models of biological membranes, but also as precursors of multilayer systems premising many technical applications. Until now, many methodologies have been developed in order to gain a better understand. Photoisomerization in monolayers of a novel azobenzene compound, azobenzene dendrimer, was investigated for the first time by means of the absorption spectrum and Maxwell displacement current (MDC) technique. Dendrimers are well-defined macromolecules exhibiting a tree-like structure, first derived by the cascade molecule approach. According to the absorption spectrum, trans-to-cis conversion ratio was estimated to the third generation of azobenzene dendrimer deposited onto a glass substrate. Temperature-dependent induced charge with trans-cis isomerization was also measured by means of MDC technique.

  • PDF

Immune cell-derived small extracellular vesicles in cancer treatment

  • Choi, Sung-Jin;Cho, Hanchae;Yea, Kyungmoo;Baek, Moon-Chang
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.48-56
    • /
    • 2022
  • Small extracellular vesicles (sEVs) secreted by most cells carry bioactive macromolecules including proteins, lipids, and nucleic acids for intercellular communication. Given that some immune cell-derived sEVs exhibit anti-cancer properties, these sEVs have received scientific attention for the development of novel anti-cancer immunotherapeutic agents. In this paper, we reviewed the latest advances concerning the biological roles of immune cell-derived sEVs for cancer therapy. sEVs derived from immune cells including dendritic cells (DCs), T cells, natural-killer (NK) cells, and macrophages are good candidates for sEV-based cancer therapy. Besides their role of cancer vaccines, DC-shed sEVs activated cytotoxic lymphocytes and killed tumor cells. sEVs isolated from NK cells and chimeric antigen receptor (CAR) T cells exhibited cytotoxicity against cancer cells. sEVs derived from CD8+ T and CD4+ T cells inhibited cancer-associated cells in tumor microenvironment (TME) and activated B cells, respectively. M1-macrophage-derived sEVs induced M2 to M1 repolarization and also created a pro-inflammatory environment. Hence, these sEVs, via mono or combination therapy, could be considered in the treatment of cancer patients in the future. In addition, sEVs derived from cytokine-stimulated immune cells or sEV engineering could improve their anti-tumor potency.

Protein phosphatase 4 dephosphorylates phosphofructokinase-1 to regulate its enzymatic activity

  • Jaehong Park;Dong-Hyun Lee
    • BMB Reports
    • /
    • v.56 no.11
    • /
    • pp.618-623
    • /
    • 2023
  • Most cancer cells utilize glucose at a high rate to produce energy and precursors for the biosynthesis of macromolecules such as lipids, proteins, and nucleic acids. This phenomenon is called the Warburg effect or aerobic glycolysis- this distinct characteristic is an attractive target for developing anticancer drugs. Here, we found that Phosphofructokinase-1 (PFK-1) is a substrate of the Protein Phosphatase 4 catalytic subunit (PP4C)/PP4 regulatory subunit 1 (PP4R1) complex by using immunoprecipitation and in vitro assay. While manipulation of PP4C/PP4R1 does not have a critical impact on PFK-1 expression, the absence of the PP4C/PP4R1 complex increases PFK-1 activity. Although PP4C depletion or overexpression does not cause a dramatic change in the overall glycolytic rate, PP4R1 depletion induces a considerable increase in both basal and compensatory glycolytic rates, as well as the oxygen consumption rate, indicating oxidative phosphorylation. Collectively, the PP4C/PP4R1 complex regulates PFK-1 activity by reversing its phosphorylation and is a promising candidate for treating glycolytic disorders and cancers. Targeting PP4R1 could be a more efficient and safer strategy to avoid pleiotropic effects than targeting PP4C directly.

The Effects of Vitamin C on Biological, Biochemical and Economical Characteristics of the Silkworm, Bombyx mori L.

  • Etebari, Kayvan;Ebadi, Rahim;Matindoost, Leila
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.8 no.1
    • /
    • pp.81-87
    • /
    • 2004
  • In order to investigate the effects of supplementary nutrients on silkworms, Bombyx mori, an experiment was conducted with ascorbic acid treatments. Dietary supplements of ascorbic acid 1, 2 and 3% were fed to silkworm larvae through 1st to 5th instar, The larvae were fed by mulberry loaves of Kokoso variety and the supplementary loaves were used once a day. These treatments resulted in a significant increase of biological parameters such as larval weight, the rate of food consumption and the approximate digestibility of the food. But the economical parameters such as cocoon weight and cocoon shell weight didnt show considerable difference compared to control. Dietary supplement of 2% ascorbic acid increased the larval weight by 7.8% and reached to 1.065g, which had the highest weight increase in the fourth day of 4th instar larvae. The percentage of daily weight increase in this group of larvae (79.01%) had significant difference compared with other treatments. The nutritional efficiency index in this group of larvae was better than others. Also the abundance of biochemical macromolecules such as glucose, cholesterol, triacylglycerol and urea in haemolymph of larvae fed by 2% ascorbic acid increased to become 29.75 (mg/㎗), 24 (mg/㎗), 75.4(mg/㎗) and 32.1(mg/㎗) respectively. But protein contents of haemolymph of larvae in each treatment were not significantly different. Since all the results achieved were not considerable either statistically or economically, this method could not be recommended to improve the sericultural parameters.

Antimicrobial Effects of a Hexapetide KCM21 against Pseudomonas syringae pv. tomato DC3000 and Clavibacter michiganensis subsp. michiganensis

  • Choi, Jeahyuk;Baek, Kwang-Hyun;Moon, Eunpyo
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.245-253
    • /
    • 2014
  • Antimicrobial peptides (AMPs) are small but effective cationic peptides with variable length. In previous study, four hexapeptides were identified that showed antimicrobial activities against various phytopathogenic bacteria. KCM21, the most effective antimicrobial peptide, was selected for further analysis to understand its modes of action by monitoring inhibitory effects of various cations, time-dependent antimicrobial kinetics, and observing cell disruption by electron microscopy. The effects of KCM21 on Gram-negative strain, Pseudomonas syringae pv. tomato DC3000 and Gram-positive strain, Clavibacter michiganensis subsp. michiganensis were compared. Treatment with divalent cations such as $Ca^{2+}$ and $Mg^{2+}$ inhibited the bactericidal activities of KCM21 significantly against P. syringae pv. tomato DC3000. The bactericidal kinetic study showed that KCM21 killed both bacteria rapidly and the process was faster against C. michiganensis subsp. michiganensis. The electron microscopic analysis revealed that KCM21 induced the formation of micelles and blebs on the surface of P. syringae pv. tomato DC3000 cells, while it caused cell rupture against C. michiganensis subsp. michiganensis cells. The outer membrane alteration and higher sensitivity to $Ca^{2+}$ suggest that KCM21 interact with the outer membrane of P. syringae pv. tomato DC3000 cells during the process of killing, but not with C. michiganensis subsp. michiganensis cells that lack outer membrane. Considering that both strains had similar sensitivity to KCM21 in LB medium, outer membrane could not be the main target of KCM21, instead common compartments such as cytoplasmic membrane or internal macromolecules might be a possible target(s) of KCM21.

In Vivo Measurement of Site-Specific Peritoneal Solute Transport Using a Fiber-Optic-based Fluorescence Photobleaching Technique

  • Lee, Donghee;Kim, Jeong Chul;Shin, Eunkyoung;Ju, Kyung Don;Oh, Kook-Hwan;Kim, Hee Chan;Kang, Eungtaek;Kim, Jung Kyung
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.228-236
    • /
    • 2015
  • Fluorescence recovery after photobleaching (FRAP) is a well-established method commonly used to measure the diffusion of fluorescent solutes and biomolecules in living cells or tissues. Here a fiber-optic-based FRAP (f-FRAP) system was developed, and validated using macromolecules in water and agarose gels of different concentrations. We applied f-FRAP to measure the site-specific diffusion of fluorescein (NaFluo) in peritoneal membranes (PMs) on the liver, cecum, and kidney of a living rat during peritoneal dialysis. Diffusion of fluorescein in PM varied in a time-dependent manner according to the type of organ ($D_{PM\;on\;Liver}/D_{NaFluo}=0.199{\pm}0.085$, $D_{PM\;on\;Cecum}/D_{NaFluo}=0.292{\pm}0.151$, $D_{PM\;on\;Kidney}/D_{NaFluo}=0.218{\pm}0.110$). The proposed method allows direct quantitative measurement of the three-dimensional diffusion in local PM in vivo, which was previously inaccessible by peritoneal function test methods such as peritoneal equilibration test (PET) and standardized PM assessment (SPA). f-FRAP is promising for local and dynamic assessments of peritoneal pathophysiology and the mass transport properties of PMs, presumed to be affected by variation of tissue structures over different organs and functional changes of the PM with years of peritoneal dialysis.