References
- Abee, T., Rombouts, F. M., Hugenholtz, J., Guihard, G. and Letellier, L. 1994. Mode of action of nisin z against Listeria monocytogenes scott a grown at high and low temperatures. Appl. Environ. Microbiol. 60:1962-1968.
- Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R. and Daszak, P. 2004. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19:535-544. https://doi.org/10.1016/j.tree.2004.07.021
- Blondelle, S. E., Perez-Paya, E. and Houghten, R. A. 1996. Synthetic combinatorial libraries: Novel discovery strategy for identification of antimicrobial agents. Antimicrob. Agents Chemother. 40:1067-1071.
- Blondelle, S. E., Takahashi, E., Houghten, R. A. and Perez-Paya, E. 1996. Rapid identification of compounds with enhanced antimicrobial activity by using conformationally defined combinatorial libraries. Biochem. J. 313:141-147. https://doi.org/10.1042/bj3130141
- Brogden, K. A. 2005. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3:238-250. https://doi.org/10.1038/nrmicro1098
- Choi, J. and Moon, E. 2009. Identification of novel bioactive hexapeptides against phytopathogenic bacteria through rapid screening of a synthetic combinatorial library. J. Microbiol. Biotechnol. 19:792-802. https://doi.org/10.4014/jmb.0809.497
- Concannon, S. P., Crowe, T. D., Abercrombie, J. J., Molina, C. M., Hou, P., Sukumaran, D. K., Raj, P. A. and Leung, K. P. 2003. Susceptibility of oral bacteria to an antimicrobial decapeptide. J. Med. Microbiol. 52:1083-1093. https://doi.org/10.1099/jmm.0.05286-0
- Crandall, A. D. and Montville, T. J. 1998. Nisin resistance in Lis teria monocytogenes ATCC 700302 is a complex phenotype. Appl. Environ. Microbiol. 64:231-237.
- Hancock, R. E. 1997. Antibacterial peptides and the outer membranes of gram-negative bacilli. J. Med. Microbiol. 46:1-3. https://doi.org/10.1099/00222615-46-1-1
- Hancock, R. E. and Chapple, D. S. 1999. Peptide antibiotics. Antimicrob. Agents Chemother. 43:1317-1323.
- Hancock, R. E. and Lehrer, R. 1998. Cationic peptides: A new source of antibiotics. Trends Biotechnol. 16:82-88. https://doi.org/10.1016/S0167-7799(97)01156-6
- Hancock, R. E. and Sahl, H. G. 2006. Antimicrobial and hostdefense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24:1551-1557. https://doi.org/10.1038/nbt1267
- Houghten, R. A. 2000. Parallel array and mixture-based synthetic combinatorial chemistry: Tools for the next millennium. Annu. Rev. Pharmacol. Toxicol. 40:273-282. https://doi.org/10.1146/annurev.pharmtox.40.1.273
- Houghten, R. A., Appel, J. R., Blondelle, S. E., Cuervo, J. H., Dooley, C. T. and Pinilla, C. 1992. The use of synthetic peptide combinatorial libraries for the identification of bioactive peptides. Biotechniques 13:412-421.
- Houghten, R. A., Pinilla, C., Appel, J. R., Blondelle, S. E., Dooley, C. T., Eichler, J., Nefzi, A. and Ostresh, J. M. 1999. Mixture- based synthetic combinatorial libraries. J. Med. Chem. 42:3743-3778. https://doi.org/10.1021/jm990174v
- Houghten, R. A., Pinilla, C., Blondelle, S. E., Appel, J. R., Dooley, C. T. and Cuervo, J. H. 1991. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354:84-86. https://doi.org/10.1038/354084a0
- Kim, K. S., Morrison, J. O. and Bayer, A. S. 1982. Deficient autolytic enzyme activity in antibiotic-tolerant lactobacilli. Infect. Immun. 36:582-585.
- Lawyer, C., Pai, S., Watanabe, M., Borgia, P., Mashimo, T., Eagleton, K. and Watanabe, K. 1996. Antimicrobial activity of a 13 amino acid tryptophan-rich peptide derived from a putative porcine precursor proten of a novel family of atibacterial prptides. FEBS Lett. 390:95-98. https://doi.org/10.1016/0014-5793(96)00637-0
- Lemaitre, B. and Hoffmann, J. 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25:697-743. https://doi.org/10.1146/annurev.immunol.25.022106.141615
- Lopez-Garcia, B., Gonzalez-Candelas, L., Perez-Paya, E. and Marcos, J. F. 2000. Identification and characterization of a hexapeptide with activity against phytopathogenic fungi that cause postharvest decay in fruits. Mol. Plant-Microbe Interact. 13:837-846. https://doi.org/10.1094/MPMI.2000.13.8.837
- Lopez-Garcia, B., Perez-Paya, E. and Marcos, J. F. 2002. Identification of novel hexapeptides bioactive against phytopathogenic fungi through screening of a synthetic peptide combinatorial library. Appl. Environ. Microbiol. 68:2453-2460. https://doi.org/10.1128/AEM.68.5.2453-2460.2002
- Miyasaki, K. T., Iofel, R., Oren, A., Huynh, T. and Lehrer, R. I. 1998. Killing of Fusobacterium nucleatum, Porphyromonas gingivalis and Prevotella intermedia by protegrins. J. Periodental Res. 33:91-98.
- Munoz, A., Lopez-Garcia, B., Perez-Paya, E. and Marcos, J. F. 2007. Antimicrobial properties of derivatives of the cationic tryptophan-rich hexapeptide paf26. Biochem. Biophys. Res. Commun. 354:172-177. https://doi.org/10.1016/j.bbrc.2006.12.173
- Reddy, K. V., Yedery, R. D. and Aranha, C. 2004. Antimicrobial peptides: Premises and promises. Int. J. Antimicrob. Agents 24:536-547. https://doi.org/10.1016/j.ijantimicag.2004.09.005
- Sal-Man, N., Oren, Z. and Shai, Y. 2002. Preassembly of membrane- active peptides is an important factor in their selectivity toward target cells. Biochemistry 41:11921-11930. https://doi.org/10.1021/bi0260482
- Sugiarto, H. and Yu, P. L. 2007. Effects of cations on antimicrobial activity of ostricacins-1 and 2 on E. coli O157:H7 and S. aureus 1056MRSA. Curr. Microbiol. 55:36-41. https://doi.org/10.1007/s00284-006-0554-z
- Sundin, G. W. and Bender, C. L. 1993. Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 59:1018-1024.
- Vidaver, A. K. 2002. Uses of antimicrobials in plant agriculture. Clin. Infect. Dis. 34:107-110. https://doi.org/10.1086/340247
- Wei, G. X. and Bobek, L. A. 2005. Human salivary mucin muc7 12-mer-l and 12-mer-d peptides: Antifungal activity in saliva, enhancement of activity with protease inhibitor cocktail or edta, and cytotoxicity to human cells. Antimicrob. Agents Chemother. 49:2336-2342. https://doi.org/10.1128/AAC.49.6.2336-2342.2005
- Yeaman, M. R. and Yount, N. Y. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55:27-55. https://doi.org/10.1124/pr.55.1.2
- Yedery, R. D. and Reddy, K. V. 2005. Antimicrobial peptides as microbicidal contraceptives: Prophecies for prophylactics- -a mini review. Eur. J. Contracept. Reprod. Health. Care. 10:32-42. https://doi.org/10.1080/13625180500035124
Cited by
- Tryptophan-Containing Cyclic Decapeptides with Activity against Plant Pathogenic Bacteria vol.22, pp.11, 2017, https://doi.org/10.3390/molecules22111817
- : bacterial canker of tomato, molecular interactions and disease management vol.19, pp.8, 2018, https://doi.org/10.1111/mpp.12678
- Tryptophan-Rich and Proline-Rich Antimicrobial Peptides vol.23, pp.4, 2018, https://doi.org/10.3390/molecules23040815