DOI QR코드

DOI QR Code

Antimicrobial Effects of a Hexapetide KCM21 against Pseudomonas syringae pv. tomato DC3000 and Clavibacter michiganensis subsp. michiganensis

  • Received : 2014.02.03
  • Accepted : 2014.06.19
  • Published : 2014.09.01

Abstract

Antimicrobial peptides (AMPs) are small but effective cationic peptides with variable length. In previous study, four hexapeptides were identified that showed antimicrobial activities against various phytopathogenic bacteria. KCM21, the most effective antimicrobial peptide, was selected for further analysis to understand its modes of action by monitoring inhibitory effects of various cations, time-dependent antimicrobial kinetics, and observing cell disruption by electron microscopy. The effects of KCM21 on Gram-negative strain, Pseudomonas syringae pv. tomato DC3000 and Gram-positive strain, Clavibacter michiganensis subsp. michiganensis were compared. Treatment with divalent cations such as $Ca^{2+}$ and $Mg^{2+}$ inhibited the bactericidal activities of KCM21 significantly against P. syringae pv. tomato DC3000. The bactericidal kinetic study showed that KCM21 killed both bacteria rapidly and the process was faster against C. michiganensis subsp. michiganensis. The electron microscopic analysis revealed that KCM21 induced the formation of micelles and blebs on the surface of P. syringae pv. tomato DC3000 cells, while it caused cell rupture against C. michiganensis subsp. michiganensis cells. The outer membrane alteration and higher sensitivity to $Ca^{2+}$ suggest that KCM21 interact with the outer membrane of P. syringae pv. tomato DC3000 cells during the process of killing, but not with C. michiganensis subsp. michiganensis cells that lack outer membrane. Considering that both strains had similar sensitivity to KCM21 in LB medium, outer membrane could not be the main target of KCM21, instead common compartments such as cytoplasmic membrane or internal macromolecules might be a possible target(s) of KCM21.

Keywords

References

  1. Abee, T., Rombouts, F. M., Hugenholtz, J., Guihard, G. and Letellier, L. 1994. Mode of action of nisin z against Listeria monocytogenes scott a grown at high and low temperatures. Appl. Environ. Microbiol. 60:1962-1968.
  2. Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R. and Daszak, P. 2004. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19:535-544. https://doi.org/10.1016/j.tree.2004.07.021
  3. Blondelle, S. E., Perez-Paya, E. and Houghten, R. A. 1996. Synthetic combinatorial libraries: Novel discovery strategy for identification of antimicrobial agents. Antimicrob. Agents Chemother. 40:1067-1071.
  4. Blondelle, S. E., Takahashi, E., Houghten, R. A. and Perez-Paya, E. 1996. Rapid identification of compounds with enhanced antimicrobial activity by using conformationally defined combinatorial libraries. Biochem. J. 313:141-147. https://doi.org/10.1042/bj3130141
  5. Brogden, K. A. 2005. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3:238-250. https://doi.org/10.1038/nrmicro1098
  6. Choi, J. and Moon, E. 2009. Identification of novel bioactive hexapeptides against phytopathogenic bacteria through rapid screening of a synthetic combinatorial library. J. Microbiol. Biotechnol. 19:792-802. https://doi.org/10.4014/jmb.0809.497
  7. Concannon, S. P., Crowe, T. D., Abercrombie, J. J., Molina, C. M., Hou, P., Sukumaran, D. K., Raj, P. A. and Leung, K. P. 2003. Susceptibility of oral bacteria to an antimicrobial decapeptide. J. Med. Microbiol. 52:1083-1093. https://doi.org/10.1099/jmm.0.05286-0
  8. Crandall, A. D. and Montville, T. J. 1998. Nisin resistance in Lis teria monocytogenes ATCC 700302 is a complex phenotype. Appl. Environ. Microbiol. 64:231-237.
  9. Hancock, R. E. 1997. Antibacterial peptides and the outer membranes of gram-negative bacilli. J. Med. Microbiol. 46:1-3. https://doi.org/10.1099/00222615-46-1-1
  10. Hancock, R. E. and Chapple, D. S. 1999. Peptide antibiotics. Antimicrob. Agents Chemother. 43:1317-1323.
  11. Hancock, R. E. and Lehrer, R. 1998. Cationic peptides: A new source of antibiotics. Trends Biotechnol. 16:82-88. https://doi.org/10.1016/S0167-7799(97)01156-6
  12. Hancock, R. E. and Sahl, H. G. 2006. Antimicrobial and hostdefense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24:1551-1557. https://doi.org/10.1038/nbt1267
  13. Houghten, R. A. 2000. Parallel array and mixture-based synthetic combinatorial chemistry: Tools for the next millennium. Annu. Rev. Pharmacol. Toxicol. 40:273-282. https://doi.org/10.1146/annurev.pharmtox.40.1.273
  14. Houghten, R. A., Appel, J. R., Blondelle, S. E., Cuervo, J. H., Dooley, C. T. and Pinilla, C. 1992. The use of synthetic peptide combinatorial libraries for the identification of bioactive peptides. Biotechniques 13:412-421.
  15. Houghten, R. A., Pinilla, C., Appel, J. R., Blondelle, S. E., Dooley, C. T., Eichler, J., Nefzi, A. and Ostresh, J. M. 1999. Mixture- based synthetic combinatorial libraries. J. Med. Chem. 42:3743-3778. https://doi.org/10.1021/jm990174v
  16. Houghten, R. A., Pinilla, C., Blondelle, S. E., Appel, J. R., Dooley, C. T. and Cuervo, J. H. 1991. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354:84-86. https://doi.org/10.1038/354084a0
  17. Kim, K. S., Morrison, J. O. and Bayer, A. S. 1982. Deficient autolytic enzyme activity in antibiotic-tolerant lactobacilli. Infect. Immun. 36:582-585.
  18. Lawyer, C., Pai, S., Watanabe, M., Borgia, P., Mashimo, T., Eagleton, K. and Watanabe, K. 1996. Antimicrobial activity of a 13 amino acid tryptophan-rich peptide derived from a putative porcine precursor proten of a novel family of atibacterial prptides. FEBS Lett. 390:95-98. https://doi.org/10.1016/0014-5793(96)00637-0
  19. Lemaitre, B. and Hoffmann, J. 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25:697-743. https://doi.org/10.1146/annurev.immunol.25.022106.141615
  20. Lopez-Garcia, B., Gonzalez-Candelas, L., Perez-Paya, E. and Marcos, J. F. 2000. Identification and characterization of a hexapeptide with activity against phytopathogenic fungi that cause postharvest decay in fruits. Mol. Plant-Microbe Interact. 13:837-846. https://doi.org/10.1094/MPMI.2000.13.8.837
  21. Lopez-Garcia, B., Perez-Paya, E. and Marcos, J. F. 2002. Identification of novel hexapeptides bioactive against phytopathogenic fungi through screening of a synthetic peptide combinatorial library. Appl. Environ. Microbiol. 68:2453-2460. https://doi.org/10.1128/AEM.68.5.2453-2460.2002
  22. Miyasaki, K. T., Iofel, R., Oren, A., Huynh, T. and Lehrer, R. I. 1998. Killing of Fusobacterium nucleatum, Porphyromonas gingivalis and Prevotella intermedia by protegrins. J. Periodental Res. 33:91-98.
  23. Munoz, A., Lopez-Garcia, B., Perez-Paya, E. and Marcos, J. F. 2007. Antimicrobial properties of derivatives of the cationic tryptophan-rich hexapeptide paf26. Biochem. Biophys. Res. Commun. 354:172-177. https://doi.org/10.1016/j.bbrc.2006.12.173
  24. Reddy, K. V., Yedery, R. D. and Aranha, C. 2004. Antimicrobial peptides: Premises and promises. Int. J. Antimicrob. Agents 24:536-547. https://doi.org/10.1016/j.ijantimicag.2004.09.005
  25. Sal-Man, N., Oren, Z. and Shai, Y. 2002. Preassembly of membrane- active peptides is an important factor in their selectivity toward target cells. Biochemistry 41:11921-11930. https://doi.org/10.1021/bi0260482
  26. Sugiarto, H. and Yu, P. L. 2007. Effects of cations on antimicrobial activity of ostricacins-1 and 2 on E. coli O157:H7 and S. aureus 1056MRSA. Curr. Microbiol. 55:36-41. https://doi.org/10.1007/s00284-006-0554-z
  27. Sundin, G. W. and Bender, C. L. 1993. Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 59:1018-1024.
  28. Vidaver, A. K. 2002. Uses of antimicrobials in plant agriculture. Clin. Infect. Dis. 34:107-110. https://doi.org/10.1086/340247
  29. Wei, G. X. and Bobek, L. A. 2005. Human salivary mucin muc7 12-mer-l and 12-mer-d peptides: Antifungal activity in saliva, enhancement of activity with protease inhibitor cocktail or edta, and cytotoxicity to human cells. Antimicrob. Agents Chemother. 49:2336-2342. https://doi.org/10.1128/AAC.49.6.2336-2342.2005
  30. Yeaman, M. R. and Yount, N. Y. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55:27-55. https://doi.org/10.1124/pr.55.1.2
  31. Yedery, R. D. and Reddy, K. V. 2005. Antimicrobial peptides as microbicidal contraceptives: Prophecies for prophylactics- -a mini review. Eur. J. Contracept. Reprod. Health. Care. 10:32-42. https://doi.org/10.1080/13625180500035124

Cited by

  1. Tryptophan-Containing Cyclic Decapeptides with Activity against Plant Pathogenic Bacteria vol.22, pp.11, 2017, https://doi.org/10.3390/molecules22111817
  2. : bacterial canker of tomato, molecular interactions and disease management vol.19, pp.8, 2018, https://doi.org/10.1111/mpp.12678
  3. Tryptophan-Rich and Proline-Rich Antimicrobial Peptides vol.23, pp.4, 2018, https://doi.org/10.3390/molecules23040815