• Title/Summary/Keyword: biological hydrogen production

Search Result 151, Processing Time 0.032 seconds

Biological Hydrogen Production Processes (생물학적 수소생산 공정)

  • Shin, Jong-Hwan;Park, Tai Hyun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.16-22
    • /
    • 2006
  • Biological hydrogen production processes are more environment-friendly and less energy intensive than thermochemical and electrochemical processes. The biological process can be divided into two categories: photosynthetic hydrogen production and hydrogen production by dark fermentation. Photosynthetic process produces hydrogen mainly from water and reduces $CO_2$ simultaneously. Dark fermentation is a dark and anaerobic process that produces hydrogen by fermentative bacteria from organic carbon. The article presents a survey of biological hydrogen production processes.

Hydrogen Production in Biological Way as Alternative Energy (생물학적인 방법을 통한 대체 에너지로서의 수소생산)

  • Jo, Younghwa;Jo, ByungHoon;Cha, Hyung Joon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.1
    • /
    • pp.57-63
    • /
    • 2011
  • Development of alternative energy is needed as the fossil is started to be exhausted. This alternative energy should be environmental friendly and renewable. Currently, the alternative energy which gets the most attraction is hydrogen. Hydrogen can be produced by a number of different processes. Among those methods, hydrogen production in biological way is considered as the most environmental friendly method. However, productivity of biological hydrogen production is not good enough to be commercialized yet. Thus, many researchers are trying to improve productivity and yield of biohydrogen production. Here, progress in the diverse developmental approaches on biological hydrogen production, is reviewed.

A Study on the Pretreatment of Activated Sludge for Bio-hydrogen Production Process (생물학적 수소생산 공정 개발을 위한 오니 슬러지 전처리에 대한 연구)

  • Park, Dae-Won;Kim, Dong-Kun;Kim, Ji-Seong;Park, Ho-Il
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.187-193
    • /
    • 2004
  • In this study, Anaerobic sewage sludge in a batch reactor operation at $35^\circ{C}$ was used as the seed to investigate the effect of pretreatments of waste activated sludge and to evaluate its hydrogen production potential by anaerobic fermentation. Various pretreatments including physical, chemical and biological means were conducted to utilize for substrate. As a result, SCODcr of alkali and mechanical treatment was 15 and 12 times enhanced, compared with a supernatant of activated sludge. And SCODcr was 2 time increase after re-treatment with biological hydrolysis. Those were shown that sequential hybridized treatment of sludge by chemical & biological methods to conform hydrogen production potential in bath experiments. When buffer solution was added to the activated sludge, hydrogen production potential increased as compare with no addition. Combination of alkali and mechanical treatment was higher in hydrogen production potential than other treatments.

Effect of Electrochemical Redox Reaction on Growth and Metabolism of Saccharomyces cerevisiae as an Environmental Factor

  • Na, Byung-Kwan;Hwang, Tae-Sik;Lee, Sung-Hun;Ahn, Dae-Hee;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.445-453
    • /
    • 2007
  • The effect of an electrochemically generated oxidation-reduction potential and electric pulse on ethanol production and growth of Saccharomyces cerevisiae ATCC 26603 was experimented and compared with effects of electron mediators (neutral red, benzyl viologen, and thionine), chemical oxidants (hydrogen peroxide and hypochlorite), chemical reductants (sulfite and nitrite), oxygen, and hydrogen. The oxidation (anodic) and reduction (cathodic) potential and electric pulse activated ethanol production and growth, and changed the total soluble protein pattern of the test strain. Neutral red electrochemically reduced activated ethanol production and growth of the test strain, but benzyl viologen and thionine did not. Nitrite inhibited ethanol production but did not influence growth of the test strain. Hydrogen peroxide, hypochlorite, and sulfite did not influence ethanol production and growth of the test strain. Hydrogen and oxygen also did not influence the growth and ethanol production. It shows that the test strain may perceive electrochemically generated oxidation-reduction potential and electric pulse as an environmental factor.

Hydrogen Production by Biological Processes

  • Shin Jong-Hwan;Park Tai Hyun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.101-104
    • /
    • 2004
  • Among biological hydrogen production processes, fermentative processes have some advantages. In this research, the hydrogen producing bacterium was isolated from domestic landfill area and identified as Enterobacter sp. The strain was named Enterobacter sp. SNU-1453. Important parameters for the hydrogen process include pH, temperature, concentration of initial glucose, and kind of sugars. The pH of the culture medium significantly decreased as fermentation proceeded due to the accumulation of various organic acids, and this inhibited the $H_2$ production seriously. When pH was controlled at pH 7.0, hydrogen production was 2614.5 m1/1 in 17 hours. The increase of glucose concentration resulted in higher $H_2$ production. The productivity of this strain was 6.87 mmol $H_2/l$ per hi on concentration of 25g glucose/l. Enterobacter sp. SNU-1453 could utilize various sugars. These results indicate that Enterobacter sp. SNU-1453 has a high potential as a fermentative $H_2$ producer.

  • PDF

Kinetic Study of pH Effects on Biological Hydrogen Production by a Mixed Culture

  • Jun, Yoon-Sun;Yu, Seung-Ho;Ryu, Keun-Garp;Lee, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1130-1135
    • /
    • 2008
  • The effect of pH on anaerobic hydrogen production was investigated under various pH conditions ranging from pH 3 to 10. When the modified Gompertz equation was applied to the statistical analysis of the experimental data, the hydrogen production potential and specific hydrogen production rate at pH 5 were 1,182 ml and 112.5 ml/g biomass-h, respectively. In this experiment, the maximum theoretical hydrogen conversion ratio was 22.56%. The Haldane equation model was used to find the optimum pH for hydrogen production and the maximum specific hydrogen production rate. The optimum pH predicted by this model is 5.5 and the maximum specific hydrogen production rate is 119.6 ml/g VSS-h. These data fit well with the experimented data($r^2=0.98$).

pH-dependent Metabolic Flux Shift in Novel Hydrogen-Producing Bacterium Enterobacter sp. SNU-1453 (새로운 수소 생산 균주인 Enterobacter sp. SNU-1453의 pH에 따른 Metabolic Flux 변화)

  • Shin, Jong-Hwan;Yoon, Jong-Hyun;Ahn, Eun-Kyoung;Sim, Sang-Jun;Kim, Mi-Sun;Park, Tai-Hyun
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.464-469
    • /
    • 2005
  • For the biological production of hydrogen, a new fermentative hydrogen-producing bacterium, Enterobacter sp. SNU-1453, was isolated from a domestic landfill. During the culture of this bacterium, pH significantly decreased with the accumulation of various organic acids, and consequently this inhibited the production of hydrogen. It was found that the metabolic flux in this bacterium depended on the pH and affected the hydrogen production. A butanediol pathway was dominant during the fermentation when pH was not controlled. By controlling the pH at 7 this pathway can be shifted to a mixed acid pathway, which is favorable to the production of hydrogen.

Patent Trend for Hydrogen Production Technology by Steam Reforming of Natural Gas (천연가스의 수증기 개질에 의한 수소 제조 기술 특허동향)

  • Seo, Dong-Ju;Yoon, Wang-Lai;Kang, Kyung-Seok;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.464-480
    • /
    • 2007
  • There are several methods for the hydrogen production such as steam reforming of natural gas, photochemical method, biological method, electrolysis and thermochemical method, etc. These days it has been widely studied for the hydrogen production method having low hydrogen production cost and high efficiency. In this paper, patents in the hydrogen production by steam reforming of natural gas were gathered and analyzed. The search range was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1996 to 2006. Patents were gathered by using key-words searching and extracted by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.

Technology Trend for Water Electrolysis Hydrogen Production by the Patent Analysis (특허분석에 의한 수전해 수소제조 기술동향)

  • Hwang, Gab-Jin;Kang, Kyung-Seok;Han, Hye-Jung;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.95-108
    • /
    • 2007
  • There are several methods for the hydrogen production such as steam reforming of natural gas, photocatalytic method, biological method, electrolysis and thermochemical method, etc. These days it has been widely studying for the hydrogen production method having low hydrogen production cost and high efficiency. In this paper, patents in the hydrogen production by water electrolysis were gathered and analyzed. The search range was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1996 to 2005. Patents were gathered by using key-words searching and filtered by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.

Technology Trend for Photochemical Hydrogen Production by the Patent Analysis (특허분석에 의한 광화학적 수소제조 기술동향)

  • Moon, Sang-Jin;Kang, Kyung-Seok;Han, Hye-Jeong;Baeg, Jin-Ook;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.197-206
    • /
    • 2007
  • There are several methods for the hydrogen production such as steam reforming of natural gas, photochemical method, biological method, electrolysis and thermochemical method, etc. Many researches have been widely performed for the hydrogen production method having low production cost and high efficiency. In this paper, the patents concerning the photochemical hydrogen production method were gathered and analyzed. The search range was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1996 to 2005. Patents were gathered by using key-words searching and filtered by filtering criteria. The patent application trend was analyzed by the years, countries, companies, and technologies.