Kinetic Study of pH Effects on Biological Hydrogen Production by a Mixed Culture

  • Jun, Yoon-Sun (Department of Environmental Engineering, Seoul National University) ;
  • Yu, Seung-Ho (Environmental Conservation Division, Korea Atomic Energy Research Institute) ;
  • Ryu, Keun-Garp (Department of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Lee, Tae-Jin (Department of Environmental Engineering, Seoul National University)
  • Published : 2008.06.30

Abstract

The effect of pH on anaerobic hydrogen production was investigated under various pH conditions ranging from pH 3 to 10. When the modified Gompertz equation was applied to the statistical analysis of the experimental data, the hydrogen production potential and specific hydrogen production rate at pH 5 were 1,182 ml and 112.5 ml/g biomass-h, respectively. In this experiment, the maximum theoretical hydrogen conversion ratio was 22.56%. The Haldane equation model was used to find the optimum pH for hydrogen production and the maximum specific hydrogen production rate. The optimum pH predicted by this model is 5.5 and the maximum specific hydrogen production rate is 119.6 ml/g VSS-h. These data fit well with the experimented data($r^2=0.98$).

Keywords

References

  1. Antoniou, P., J. Hamilton, B. Koopman, R. Jain, B. Holloway, G. Lyberatos, and S. A. Svoronos. 1990. Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria. Wat. Res. 24: 97-101 https://doi.org/10.1016/0043-1354(90)90070-M
  2. APHA. 2002. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington D.C
  3. Baek, J., E. Choi, Y. Yun, S. Kim, and M. Kim. 2006. Comparison of hydrogenases from Clostridium butyricum and Thiocapsa roseopersicina: Hydrogenases of C. butyricum and T. roseopersicina. J. Microbiol. Biotechnol. 16: 1210-1215
  4. Boyles, D. 1984. Bio-energy Technology Thermodynamics and Costs, pp. 8-13. Wiley & Sons, New York
  5. Chen, C. C., C. Y. Lin, and M. C. Lin. 2002. Acid-base enrichment enhances anaerobic hydrogen production process. Appl. Microbiol. Biotechnol. 58: 224-228 https://doi.org/10.1007/s002530100814
  6. Dabrock, B., H. Bahl, and G. Gottschalk. 1992. Parameters affecting solvent production by Clostridium pasteurianum. Appl. Environ. Microbiol. 58: 1233-1239
  7. Das, D. and T. N. Veziroglu. 2001. Hydrogen production by biological process: A survey of literature. Int. J. Hydrogen Energy 26: 13-28 https://doi.org/10.1016/S0360-3199(00)00058-6
  8. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 https://doi.org/10.1021/ac60111a017
  9. Gavala, H. N., I. V. Skiadas, and B. K. Ahring. 2006. Biological hydrogen production in suspended and attached growth anaerobic reactor system. Int. J. Hydrogen Energy 31: 1164-1175 https://doi.org/10.1016/j.ijhydene.2005.09.009
  10. Hallenbeck, P. and J. R. Benemann. 2002. Biological hydrogen production: Fundamentals and limiting processes. Int. J. Hydrogen Energy 27: 1185-1194 https://doi.org/10.1016/S0360-3199(02)00131-3
  11. Hawkes, F. R., R. Dinsdale, D. L. Hawkes, and I. Hussy. 2002. Sustainable fermentative hydrogen production: Challenges for process optimization. Int. J. Hydrogen Energy 27: 1339-1347 https://doi.org/10.1016/S0360-3199(02)00090-3
  12. Kim, E., S. B. Yoo, M. S. Kim, and J. K. Lee. 2005. Improvement of photoheterotrophic hydrogen production of Rhodobacter sphaeroides by removal of B800-850 light-harvesting complex. J. Microbiol. Biotechnol. 15: 1115-1119
  13. Lay, J. J. 2000. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol. Bioeng. 68: 269-278 https://doi.org/10.1002/(SICI)1097-0290(20000505)68:3<269::AID-BIT5>3.0.CO;2-T
  14. Leclerc, M., A. Bernalier, G. Donadille, and M. Lelait. 1997. $H_2/CO_2$ metabolism in acetogenic bacteria isolated from the human colon. Anaerobe 3: 307-315 https://doi.org/10.1006/anae.1997.0117
  15. Lee, Y. J., T. Miyahara, and T. Noike. 2002. Effect of pH on microbial hydrogen fermentation. J. Chem. Technol. Biotechnol. 77: 694-698 https://doi.org/10.1002/jctb.623
  16. Logan, B. E., S. E. Oh, I. S. Kim, and S. V. Ginkel. 2002. Biological hydrogen production measured in batch anaerobic respirometers. Environ. Sci. Technol. 36: 2530-2535 https://doi.org/10.1021/es015783i
  17. Mayo, A. W. and T. Noike. 1994. Response of mixed culture of Chlorella vulgaris and heterotrophic bacteria to variation of pH. Wat. Sci. Technol. 30: 285-294
  18. Mizno, O., T. Ohara, M. Shinya, and T. Noike. 2000. Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora. Water Sci. Technol. 42: 345-350
  19. Mizno, O., R. Dinsdale, F. R. Hawkes, D. L. Hawkes, and T. Noike. 2000. Enhancement of hydrogen production from nitrogen gas sparging. Bioresource Technol. 73: 59-65 https://doi.org/10.1016/S0960-8524(99)00130-3
  20. Morvan, B., F. Rieu-Lesme, G. Fonty, and P. Gouet. 1996. In vitro interactions between rumen H2-utilizing acetogenic and sulfate-reducing bacteria. Anaerobe 2: 175-180 https://doi.org/10.1006/anae.1996.0023
  21. Nandi, R. and S. Sengupta. 1998. Microbial production of hydrogen: An overview. Crit. Rev. Microbiol. 24: 61-64
  22. Nath, K. and D. Das. 2004. Improvement of fermentative hydrogen production: Various approaches. Appl. Microbiol. Biotechnol. 65: 520-529
  23. Noike, T. and O. Mizno. 2000. Hydrogen fermentation of organic municipal wastes. Water Sci. Technol. 42: 155-162
  24. Okamoto, M., T. Miyahara, O. Mizno, and T. Noike. 2000. Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci. Technol. 41: 25-32
  25. Pedro, M. S., S. Haruta, M. Hazaka, R. Shimada, C. Yoshida, K. Hiura, M. Ishii, and Y. Igarashi. 2001. Denaturing gradient gel electrophoresis analyses of microbial community from fieldscale composter. J. Biosci. Bioeng. 91: 159-165 https://doi.org/10.1016/S1389-1723(01)80059-1
  26. Seo, K., D. H. Chung, M. Kim, K. Lee, K. Kim, G. Bahk, D. Bae, K. Kim, C. Kim, and S. Ha. 2007. Development of predictive mathematical model for the growth kinetics of Staphylococcus aureus by response surface model. J. Microbiol. Biotechnol. 17: 1437-1444
  27. Shin, D., A. Yoo, S. W. Kim, and D. R. Yang. 2006. Cybernetic modeling of simultaneous saccharification and fermentation for ethanol production from steam-exploded wood with Brettanomyces custersii. J. Microbiol. Biotechnol. 16: 1355-1361
  28. Sim, S. J., T. Gong, M. S. Kim, and T. H. Park. 2005. Dark hydrogen production by a green microalgae, Chlamydomonas reinhardtii UTEX90. J. Microbiol. Biotechnol. 15: 1159-1163
  29. Sparling, R., D. Risbey, and H. M. Poggi-Varaldo. 1997. Hydrogen production from inhibited anaerobic composters. Int. J. Hydrogen Energy 22: 563-566 https://doi.org/10.1016/S0360-3199(96)00137-1
  30. Tang, I. C., M. R. Okos, and S. T. Yang. 1989. Effect of pH and acetic acid on homoacetic fermentation of lactate by Clostridium formicoaceticum. Biotechnol. Bioeng. 34: 1063- 1074 https://doi.org/10.1002/bit.260340807
  31. van Niel, E. W. J., P. A. M. Claassen, and A. J. M. Stams. 2003. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol. Bioeng. 81: 255-262 https://doi.org/10.1002/bit.10463