• Title/Summary/Keyword: biological factors

Search Result 2,497, Processing Time 0.03 seconds

Association between RASSF1A Methylation and Clinicopathological Factors in Patients with Squamous Cell Carcinoma of Lung (편평상피폐암에서 암억제유전자 RASSF1A의 메틸화와 임상 및 병리소견과의 연관성)

  • Choi, Naeyun;Lee, Hye-Sook;Song, In Seung;Lim, Yu Sung;Son, Dae-Soon;Lim, Dae-Sik;Choi, Yong Soo;Kim, Jhingook;Kim, Hojoong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.3
    • /
    • pp.265-272
    • /
    • 2004
  • Background : RASSF1A, which is one of tumor suppressor genes, is frequently inactivated by hypermethylation of the promoter region in a variety of human cancers, including lung cancer. This study was performed to investigate the association between RASSF1A methylation and the clinicopathological factors in patients with squamous cell carcinoma of the lung. Methods : Eighty-one samples from the patients with squamous cell carcinoma of lung were examined. The promoter methyation of RASSF1A was analyzed by methylation specific PCR and sequencing. Statistical analysis was made to examine the association between RASSF1A methylation and the clinicopathological parameters. Results : RASSF1A methylation was observed in 37.0 % (30 of 81) of the patients with squamous cell carcinoma of the lung. RASSF1A methylation was found to be associated with cellular differentiation(p=0.0097) and the overall survival(p=0.0635). However, there was no association between RASSF1A methylation and the other clinicopathological parameters, such as the pathological TNM stage, the recurrence rate, lymph node invasion and the amount of cigarettes smoked. Conclusion : RASSF1A methylation might be associated with a poor prognosis in patients with squamous carcinoma of the lung. A larger scale study is needed.

Habitats Environmental and Population Characteristics of Iris koreana Nakai, a Rare and Endemic Species in Korea (한반도 희귀·특산식물 노랑붓꽃의 자생지 환경 및 개체군 특성)

  • Pi, Jung-Hun;Park, Jeong-Geun;Jung, Ji-Young;Park, Jeong-Seok;Suh, Gang-Uk;Son, Sung-Won
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.2
    • /
    • pp.102-109
    • /
    • 2016
  • The sustainability of Iris koreana, a rare and endemic plant designated by the Korea Forest Service, is threatened due to artificial factors such as habitats loss and climate change etc. and internal factors such as changes in biological properties of the habitats etc. but conservation biology research has not been performed in South Korea. The objective of this study is to establish the species conservation strategies by analyzing the characteristics of their habitats, including: 1) Population characteristics, and 2) habitat analysis of the vegetation and abiotic environments. From April to May, 2015, population characteristics [density (stems $m^{-2}$), flowering rate (%) and leaf area size ($cm^2$)] in I. koreana habitats such as Buan1~6 (BA1~6), Jangseong1~2 (JS1~2) and vegetation characteristics (phytosociological research and ordination analysis), and abiotic environments [soil temperature ($^{\circ}C$), soil humidity (%), transmitted light ($mol{\cdot}m^{-2}{\cdot}d^{-1}$) and canopy openness (%)] were measured. I. koreana was mainly distributed at elevation 50 to 150 m and 2 to $11^{\circ}$ slope. Slope direction was shown as 90 to $193^{\circ}$. The average degree of canopy openness was 11.9%. It showed the highest at BA2 (17.5) and the lowest at JS1 (7.7). The average degree of transmitted light was $6.3mol{\cdot}m^{-2}{\cdot}d^{-1}$. It showed the highest at BA2 (10.1) and the lowest at JS1 (3.6). Population density showed average 25.8 (stems $m^{-2}$). It showed the highest at JS2 (19.7) and the lowest at JS1 (9.3). flowering stems showed average 16.9 (stems). It showed the highest at BA3 (35) and the lowest at BA5 (4). Leaf area size was average $94.1cm^2$.

Habitats Environmental and Population Characteristics of Cypripedium japonicum Thunb., a Rare Species in Korea (희귀식물 광릉요강꽃 자생지 환경 및 개체군 특성)

  • Pi, Jung-Hun;Jung, Ji-Young;Park, Jeong-Geun;Yang, Hyung-Ho;Kim, Eun-Hye;Suh, Gang-Uk;Lee, Cheul-Ho;Son, Sung-Won
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.253-262
    • /
    • 2015
  • The sustainability of Cypripedium japonicum, a rare plant designated by the Korea Forest Service, is threatened due to artificial factors such as habitat loss and climate change etc. and internal factors such as changes in biological properties of the habitat etc. but conservation research has not been performed in South Korea. The objective of this study is to establish the species conservation strategies by analyzing the characteristics of their habitats, including: 1) Population characteristics, and 2) habitat analysis of the vegetation and abiotic environments. From April to September, 2014, population characteristics [density (stems $m^{-2}$), flowering rate (%), and leaf area ($cm^2$)] in Cypripedium japonicum habitats such as Chuncheon (CC), Hwacheon (HC), Muju (MJ), and Gwangyang (GY) and vegetation characteristics (plant sociological research and ordination analysis), and abiotic environments [temperature ($^{\circ}C$), relative humidity (%), transmitted light ($mol{\cdot}m^{-2}{\cdot}d^{-1}$) and canopy openness (%)] were measured. Cypripedium japonicum was mainly distributed at elevation 450 to 990 m and 5 to $30^{\circ}$ slope. Slope direction was shown as 0 to $110^{\circ}$. Habitats temperature (mean $18.94^{\circ}C$) was well matched to seasonal changes. Differences among sites showed greater level according to latitude difference. It showed the highest in habitat, GY located in the South. On the other hand, relative humidity (77.38%) didn't show much difference among sites. The average degree of canopy openness was 18.17%. It showed the highest at HC (22.1%) and the lowest at MJ (16.1%). The average degree of transmitted light was $9.1mol{\cdot}m^{-2}{\cdot}d^{-1}$. It showed the highest at CC ($10.6mol{\cdot}m^{-2}{\cdot}d^{-1}$) and the lowest at GY ($6.87mol{\cdot}m^{-2}{\cdot}d^{-1}$). Chlorophyll content showed average 26.12 SPAD. It showed the highest at MJ (30.64 SPAD value) and the lowest at HC (23.69 SPAD value). Leaf area was average $253.35cm^2$. It showed the highest at CC ($281.51cm^2$) and the lowest at HC ($238.23cm^2$).

Dynamics of Phosphorus-Turbid Water Outflow and Limno-Hydrological Effects on Hypolimnetic Effluents Discharging by Hydropower Electric Generation in a Large Dam Reservoir (Daecheong), Korea (대청호 발전방류수의 인·탁수 배출 역동성과 육수·수문학적 영향)

  • Shin, Jae-Ki;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • Daecheong Reservoir was made by the construction of a large dam (>15 m in height) on the middle to downstream of the Geum River and the discharge systems have the watergate-spillway (WS), a hydropower penstock (HPP), and two intake towers. The purpose of this study was to investigate the limnological anomalies of turbid water reduction, green algae phenomenon, and oligotrophic state in the lower part of reservoir dam site, and compared with hydro-meteorological factors. Field surveys were conducted in two stations of near dam and the outlet of HPP with one week intervals from January to December 2000. Rainfall was closely related to the fluctuations of inflow, outflow and water level. The rainfall pattern was depended on the storm of monsoon and typhoon, and the increase of discharge and turbidity responded more strongly to the intensity than the frequency. Water temperature and DO fluctuations within the reservoir water layer were influenced by meteorological and hydrological events, and these were mainly caused by water level fluctuation based on temperature stratification, density current and discharge types. The discharges of WS and HPP induced to the flow of water bodies and the outflows of turbid water and nutrients such as nitrogen and phosphorus, respectively. Especially, when hypoxic or low-oxygen condition was present in the bottom water, the discharge through HPP has contributed significantly to the outflow of phosphorus released from the sediment into the downstream of dam. In addition, HPP effluent which be continuously operated throughout the year, was the main factor that could change to a low trophic level in the downreservoir (lacustrine zone). And water-bloom (green-tide) occurring in the lower part of reservoir was the result that the water body of upreservoir being transported and diffused toward the downreseroir, when discharging through the WS. Finally, the hydropower effluent was included the importance and dynamics that could have a temporal and spatial impacts on the physical, chemical and biological factors of the reservoir ecosystem.

Anti-oxidative and Anti-inflammatory Activities of Fermented Turmeric (Curcuma longa L.) by Rhizopus oryzae (Rhizopus oryzae으로 발효한 울금의 항산화 및 항염효과)

  • Kim, Eun-Ju;Song, Bit-Na;Jeong, Da-Som;Kim, So-Young;Cho, Yong-Sik;Park, Shin-Young
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1315-1323
    • /
    • 2017
  • Turmeric is a rhizomatous herbaceous perennial plant (Curcuma longa (CL)) of the ginger family, Zingiberaceae. A yellow-pigmented fraction isolated from the rhizomes of CL contains curcuminoids belonging to the dicinnamoyl methane group. Curcumin is an important active ingredient responsible for the biological activity of CL. However, CL is not usually used as a food source due to its bitter taste. The present study was designed to determine the effect of the CL fermented by Rhizopus oryzae (FCL) on pro-inflammatory factors such as nuclear factor ${\kappa}B$ ($NF-{\kappa}B$), tumor necrosis factor alpha ($TNF-{\alpha}$), interleukin-6 (IL-6), nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced RAW 264.7 cell line. The cell viability was determined by MTT assay. To evaluate the anti-inflammatory effect of FCL 80% EtOH extracts, IL-6 and $TNF-{\alpha}$ were measured by ELISA kit. Also, the amount of $NO/PGE_2/NF-{\kappa}B$ was measured using the $NO/PGE_2/NF-{\kappa}B$ detection kit and the iNOS/COX-2 expression was measured by Western blotting. The results showed that the FCL reduced NO, $PGE_2$, iNOS, COX-2, $NF-{\kappa}B$, IL-6 and $TNF-{\alpha}$ production without cytotoxicity. These results suggest that FCL extracts may be a developed the functional food related to anti-inflammation due to the significant effects on inflammatory factors.

In silico Analysis of Downstream Target Genes of Transcription Factors (생명정보학을 이용한 전사인자의 하위표적유전자 분석에 관한 연구)

  • Hwang, Sang-Joon;Chun, Sang-Young;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.2
    • /
    • pp.125-132
    • /
    • 2006
  • Objective: In the previous study, we complied the differentially expressed genes during early folliculogenesis. Objective of the present study was to identify downstream target genes of transcription factors (TFs) using bioinformatics for selecting the target TFs among the gene lists for further functional analysis. Materials & Methods: By using bioinformatics tools, constituent domains were identified from database searches using Gene Ontology, MGI, and Entrez Gene. Downstream target proteins/genes of each TF were identified from database searches using TF database ($TRANSFAC^{(R)}$ 6.0) and eukaryotic promoter database (EPD). Results: DNA binding and trans-activation domains of all TFs listed previously were identified, and the list of downstream target proteins/genes was obtained from searches of TF database and promoter database. Based on the known function of identified downstream genes and the domains, 3 (HNF4, PPARg, and TBX2) out of 26 TFs were selected for further functional analysis. The genes of wee1-like protein kinase and p21WAF1 (cdk inhibitor) were identified as potential downstream target genes of HNF4 and TBX2, respectively. PPARg, through protein-protein interaction with other protein partners, acts as a transcription regulator of genes of EGFR, p21WAF1, cycD1, p53, and VEGF. Among the selected 3 TFs, further study is in progress for HNF4 and TBX2, since wee1-like protein kinase and cdk inhibitor may involved in regulating maturation promoting factor (MPF) activity during early folliculogenesis. Conclusions: Approach used in the present study, in silico analysis of downstream target genes, was useful for analyzing list of TFs obtained from high-throughput cDNA microarray study. To verify its binding and functions of the selected TFs in early folliculogenesis, EMSA and further relevant characterizations are under investigation.

Physiological Changes of Saccharomyces cerevisiae KNU5377 Occurred in the Process of the 48-hour Ethanol Fermentation at 40℃ (40℃ 48시간 에탄올발효 과정 중 일어나는 Saccharomyces cerevisiae KNU5377의 생리 변화)

  • Kwak, Sun-Hye;Kim, Il-Sup;Kang, Kyung-Hee;Lee, Jung-Sook;Jin, Ingn-Yol
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.146-154
    • /
    • 2011
  • In this study, physiological changes in a thermotolerant yeast Saccharomyces cerevisiae KNU5377 cell exposed to 48-hour alcohol fermentation at $40^{\circ}C$ were investigated. After 12 hours of alcohol fermentation at $40^{\circ}C$, the $C_{16:1}$ unsaturated acid of plasma membrane increased to 1.5 times more than the $C_{16:0}$ saturated fatty acid, and to about 2 times more for the $C_{18:1}$ unsaturated fatty acid. Fermentation at both $30^{\circ}C$ and $37^{\circ}C$ fermentation showed the same pattern as that done at $40^{\circ}C$. The pH of the alcohol-fermentation medium was reduced to pH 4.1 from a starting pH of 6.0 through the 12-hr fermentation and then maintained this level during the continuing fermentation. With the process of fermentation, the remaining glucose was reduced, but its amount remaining during the $40^{\circ}C$-fermentation was less reduced than those fermented at $30^{\circ}C$ and $37^{\circ}C$. In the study investigating the changing pattern of cellular proteins in the alcohol-fermenting cells, the SDS-PAGE and 2-D data indicated the most expressed dot was phosphoglycerate kinase, which is one enzyme involved in glycolysis. Why this enzyme was most expressed in the cells exposed to unfavorable conditions such as high temperature, increasing concentration of produced alcohol and long time exposure to other stress factors remains unsolved.

Production Medium Optimization for Monascus Biomass Containing High Content of Monacolin-K by Using Soybean Flour Substrates (기능성 원료를 기질로 이용하는 Monacolin-K 고함유 모나스커스 균주의 생산배지 최적화)

  • Lee, Sun-Kyu;Chun, Gie-Taek;Jeong, Yong-Seob
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.463-469
    • /
    • 2008
  • During the last decade, monacolin-K biosynthesized by fermentation of red yeast rice (Monascus strains) was proved to have an efficient cholesterol lowering capability, leading to rapid increase in the market demand for the functional red yeast rice. In this study, the production medium composition and components were optimized on a shake flask scale for monacolin-K production by Monascus pilosus (KCCM 60160). The effect of three different soybean flours on the monacolin-K production were studied in order to replace the nitrogen sources of basic production medium (yeast extract, malt extract and beef extract). Among the several experiments, the production medium with dietary soybean flour to replace a half of yeast extract was very good for monacolin-K production. Plackett-Burman experimental design was used to determine the key factors which are critical to produce the biological products in the fermentation. According to the result of Plackett-Burman experimental design, a second order response surface design was applied using yeast extract, beef extract and $(NH_4)_2SO_4$ as factors. Applying this model, the optimum concentration of the three variables was obtained. The maximum monacolin-K production (369.6 mg/L) predicted by model agrees well with the experimental value (418 mg/L) obtained from the experimental verification at the optimal medium. The yield of monacolin-K was increased by 67% as compared to that obtained with basic production medium in shake flasks.

Effect of micro-environment in ridge and southern slope on soil respiration in Quercus mongolica forest

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.210-218
    • /
    • 2018
  • Background: Soil respiration (Rs) is a major factor of the absorption and accumulation of carbon through photosynthesis in the ecosystem carbon cycle. This directly affects the amount of net ecosystem productivity, which affects the stability and sustainability of the ecosystem. Understanding the characteristics of Rs is indispensable to scientifically understand the carbon cycle of ecosystems. It is very important to study Rs characteristics through analysis of environmental factors closely related to Rs. Rs is affected by various environmental factors, such as temperature, precipitation, soil moisture, litter supply, organic matter content, dominant plant species, and soil disturbance. This study was conducted to analyze the effects of micro-topographical differences on Rs in forest vegetation by measuring the Rs on the ridge and southern slope sites of the broadly established Quercus mongolica forest in the central Korean area. Method: Rs, Ts, and soil moisture data were collected at the southern slope and ridge of the Q. mongolica forest in the Mt. Jeombong area in order to investigate the effects of topographical differences on Rs. Rs was collected by the closed chamber method, and data collection was performed from May 2011 to October 2013, except Winter seasons from November to April or May. For collecting the raw data of Rs in the field, acrylic collars were placed at the ridge and southern slope of the forest. The accumulated surface litter and the soil organic matter content (SOMC) were measured to a 5 cm depth. Based on these data, the Rs characteristics of the slope and ridge were analyzed. Results: Rs showed a distinct seasonal variation pattern in both the ridge and southern slope sites. In addition, Rs showed a distinct seasonal variation with high and low Ts changes. The average Rs measurements for the two sites, except for the Winter periods that were not measured, were $550.1\;mg\;CO_2m^{-2}h^{-1}$ at the ridge site and $289.4\;mg\;CO_2m^{-2}h^{-1}$ at the southern slope, a difference of 52.6%. There was no significant difference in the Rs difference between slopes except for the first half of 2013, and both sites showed a tendency to increase exponentially as Ts increased. In addition, although the correlation is low, the difference in Rs between sites tended to increase as Ts increased. SMC showed a large fluctuation at the southern slope site relative to the ridge site, as while it was very low in 2013, it was high in 2011 and 2012. The accumulated litter of the soil surface and the SOMC at the depth range of 0~5 cm were $874g\;m^{-2}$ and 23.3% at the ridge site, and $396g\;m^{-2}$ and 19.9% at the southern slope site. Conclusions: In this study, Rs was measured for the ridge and southern slope sites, which have two different results where the surface litter layer is disturbed by strong winds. The southern slope site shows that the litter layer formed in autumn due to strong winds almost disappeared, and while in the ridge site, it became thick due to the transfer of litter from the southern slope site. The mean Rs was about two times higher in the ridge site compared to that in the southern slope site. The Rs difference seems to be due to the difference in the amount of litter accumulated on the soil surface. As a result, the litter layer supplied to the soil surface is disturbed due to the micro-topographical difference, as the slope and the change of the community structure due to the plant season cause heterogeneity of the litter layer development, which in turn affects SMC and Rs. Therefore, it is necessary to introduce and understand these micro-topographical features and mechanisms when quantifying and analyzing the Rs of an ecosystem.

Longitudinal Pattern of Large Wood Distribution in Mountain Streams (산지계류에 있어서 유목의 종단적 분포특성)

  • Seo, Jung Il;Chun, Kun Woo;Kim, Min Sik;Yeom, Kyu Jin;Lee, Jin Ho;Kimura, Masanobu
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.52-61
    • /
    • 2011
  • Whereas recent researches have elucidated the positive ecological roles of large wood (LW) in fishbearing channels, LW is also recognized as a negative factor of log-laden debris flows and floods in densely populated areas. However in Republic of Korea, no study has investigated longitudinal variations of LW distribution and dynamic along the stream corridor. Hence to elucidate 1) physical factors controlling longitudinal distribution of LW and 2) their effect on variation in LW load amount, we surveyed the amount of LW with respect to channel morphology in a mountain stream, originated from Mt. Ki-ryong in Inje, Gangwondo. Model selection in the Generalized Linear Model procedure revealed that number of boulder (greater than or equal to 1.0 m in diameter), bankfull channel width and their interaction were the best predictors explaining LW load volume per unit channel segment area (unit LW load). In general, boulders scattered within small mountain streams influence LW retention as flow obstructions. However, in this study, we found that the effect of the boulders vary with the channel width; that is, whereas the unit LW load in the segment with narrow channel width increased continuously with increasing boulder number, it in the segment with wide channel width did not depend on the boulder number. This should be because that, in two channels having different widths, the rates of channel widths reduced by boulders are different although boulder numbers are same. Our findings on LW load varying with physical factors (i.e., interaction of boulder number and channel width) along the stream corridor suggest understanding for longitudinal continuum of hydrogeomorphic and ecologic characteristics in stream environments, and these should be carefully applied into the erosion control works for systematic watershed management and subsequent disaster prevention.