DOI QR코드

DOI QR Code

Longitudinal Pattern of Large Wood Distribution in Mountain Streams

산지계류에 있어서 유목의 종단적 분포특성

  • Seo, Jung Il (Department of Geosciences, Oregon State University) ;
  • Chun, Kun Woo (Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Kim, Min Sik (Korean Association of Soil and Water Conservation) ;
  • Yeom, Kyu Jin (Gangwon Forest Conservation Movement) ;
  • Lee, Jin Ho (Gangwon Branch of Korean Association of Soil and Water Conservation) ;
  • Kimura, Masanobu (Faculty of Applied Biological Sciences, Gifu University)
  • 서정일 (오리건주립대학 지오사이언스과) ;
  • 전근우 (강원대학교 산림환경과학대학) ;
  • 김민식 ((특)사방협회 본회) ;
  • 염규진 (강원산지보전협회) ;
  • 이진호 ((특)사방협회 강원지부) ;
  • 木村正信 (일본 기부대학 응용생물과학부)
  • Received : 2010.10.11
  • Accepted : 2010.11.01
  • Published : 2011.03.31

Abstract

Whereas recent researches have elucidated the positive ecological roles of large wood (LW) in fishbearing channels, LW is also recognized as a negative factor of log-laden debris flows and floods in densely populated areas. However in Republic of Korea, no study has investigated longitudinal variations of LW distribution and dynamic along the stream corridor. Hence to elucidate 1) physical factors controlling longitudinal distribution of LW and 2) their effect on variation in LW load amount, we surveyed the amount of LW with respect to channel morphology in a mountain stream, originated from Mt. Ki-ryong in Inje, Gangwondo. Model selection in the Generalized Linear Model procedure revealed that number of boulder (greater than or equal to 1.0 m in diameter), bankfull channel width and their interaction were the best predictors explaining LW load volume per unit channel segment area (unit LW load). In general, boulders scattered within small mountain streams influence LW retention as flow obstructions. However, in this study, we found that the effect of the boulders vary with the channel width; that is, whereas the unit LW load in the segment with narrow channel width increased continuously with increasing boulder number, it in the segment with wide channel width did not depend on the boulder number. This should be because that, in two channels having different widths, the rates of channel widths reduced by boulders are different although boulder numbers are same. Our findings on LW load varying with physical factors (i.e., interaction of boulder number and channel width) along the stream corridor suggest understanding for longitudinal continuum of hydrogeomorphic and ecologic characteristics in stream environments, and these should be carefully applied into the erosion control works for systematic watershed management and subsequent disaster prevention.

수변역을 구성하는 중요한 요소인 유목은 유역의 생태적 환경에 영향을 미치는 동시에 재해의 요인으로서 인간생활권에 악영향을 미치기도 한다. 그럼에도 불구하고 우리나라에서는 유목의 발생, 이동 및 체류특성에 대한 구체적인 연구가 진행되고 있지 않다. 따라서 이 연구에서는 산지계류에 있어서 유목체류의 종단적 분포의 이질성에 영향을 미치는 인자를 규명하고, 그에 따른 유목체류량의 변화를 해석하기 위해 강원도 인제군에 위치한 기룡산 유역을 대상으로 유목의 종단적 분포특성을 파악하였다. 조사 결과, 조사구간의 평균계폭, 직경 1 m 이상의 거력의 개수 및 이들 간의 상호관계가 유목체류량을 설명하는 최적의 예측자로서 나타났다. 일반적으로 산지계류에 분포하고 있는 거력은 유목의 이동을 방해하는 장해물로서 유목체류에 적절한 물리적 환경을 조성한다. 그러나 이 연구에서는 이러한 거력의 영향이 산지계류의 규모에 따라 다르게 나타나는 것으로 나타났다. 즉 계폭이 좁은 구간의 경우 산지계류 내에 분포하는 거력의 개수가 증가함에 따라 유목체류량 역시 지속적으로 증가한 반면, 계폭이 큰 구간의 경우 유목체류량에 미치는 거력의 개수의 영향이 작은 것으로 나타났다. 이는 계폭이 다른 두 지역에 있어서 동일한 양의 거력들이 존재할 경우 이들에 의한 계폭의 감소비율이 다르기 때문인 것으로 사료된다. 따라서 이러한 유목의 종단적 분포특성 및 이에 영향을 미치는 생태적 물리적 환경을 고려한 계통적이고 체계적인 사방사업이 실시되어야 할 것이다.

Keywords

References

  1. 전근우, 김민식, 박완근, 江崎次夫. 1997. 산지급류소하천에 있어서 하상미지형과 유목 특성. 한국임학회지 86:69-79.
  2. 행정자치부 국립방재연구소. 2002. 2002 태풍 루사 피해 현장조사 보고서. pp. 259.
  3. 大隅眞一. 1987. 森林計測學講義. 養賢堂. 東京, 日本. pp. 287.
  4. 篠原謹爾. 1975. 河川工學. 共立出版. 東京, 日本. pp. 183.
  5. Allan, J.D. 1995. Stream Ecology: Structure and Function of Running Waters. 1st ed. Chapman & Hall. London, U.K. pp. 388.
  6. Anderson, N.H., Sedell, J.R., Roberts, L.M. and Triska, F.J. 1978. The role of aquatic macroinvertebrates in processing of wood debris in coniferous forest streams. American Midland Naturalist 100: 64-82. https://doi.org/10.2307/2424778
  7. Benda, L.E. and Cundy, T.W. 1990. Predicting deposition of debris flows in mountain channels. Canadian Geotechnical Journal 27: 409-417. https://doi.org/10.1139/t90-057
  8. Benda, L., Miller, D., Sias, J., Martin, D., Bilby, R., Veldhuisen, C. and Dunne, T. 2003. Wood recruitment processes and wood budgeting. pp. 49-73. In: S.V. Gregory, K.L. Boyer and A.M. Gurnell, ed. The Ecology and Management of Wood in World Rivers (American Fisheries Society Symposium 37). American Fisheries Society. Bethesda, MD, U.S.A.
  9. Braudrick, C.A. and Grant, G.E. 2000. When do logs move in rivers? Water Resources Research 36: 571-583. https://doi.org/10.1029/1999WR900290
  10. Braudrick, C.A. and Grant, G.E. 2001. Transport and deposition of large woody debris in streams: a flume experiment. Geomorphology 41: 263-283. https://doi.org/10.1016/S0169-555X(01)00058-7
  11. Burnham, K.P. and Anderson, D.R. 2002. Model Selection and Multimodel Inference: A Practical Information- Theoretic Approach, 2nd ed. Springer-Verlag, New York, U.S.A. pp. 488.
  12. Environmental Systems Research Institute (ESRI). 2007. ArcGIS Desktop Version 9.2. Environmental Systems Research Institute, Redlands, CA, U.S.A.
  13. Grant, G.E. and Swanson, F.J. 1995. Morphology and processes of valley floors in mountain streams, western Cascades, Oregon. pp. 83-101. In: J.E. Costa, A.J. Miller, K.W. Potter and P.R. Wilcock, ed. Natural and authropogenic influences in fluvial geomorphology. American Geophysical Union, Washington, DC, U.S.A.
  14. Gurnell, A.M., Petts, G.E., Harris, N., Ward, J.V., Tockner, K., Edwards, P.J. and Kollmann, J. 2000. Large wood retention in river channels: the case of the Fiume Tagliamento, Italy. Earth Surface Processes and Landforms 25:255-275. https://doi.org/10.1002/(SICI)1096-9837(200003)25:3<255::AID-ESP56>3.0.CO;2-H
  15. Gurnell, A.M., Piegay, H., Swanson, F.J. and Gregory, S.V. 2002. Large wood and fluvial processes. Freshwater Biology 47: 601-619. https://doi.org/10.1046/j.1365-2427.2002.00916.x
  16. Harmon, M.E., Franklin, J.F., Swanson, F.J., Sollins, P., Gregory, S.V., Lattin, J.D., Anderson, N.H., Cline, S.P., Aumen, N.G., Sedell, J.R., Lienkaemper, G.W., Cromack, K. Jr. and Cummins, K.W. 1986. Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research 15: 133-302.
  17. Johnson, S.L., Swanson, F.J., Grant, G.E. and Wondzell, S.M. 2000. Riparian forest disturbances by a mountain flood: the influence of floated wood. Hydrological Processes 14:3031-3050. https://doi.org/10.1002/1099-1085(200011/12)14:16/17<3031::AID-HYP133>3.0.CO;2-6
  18. Keller, E.A. and Swanson, F.J. 1979. Effects of large organic material on channel form and fluvial processes. Earth Surface Processes and Landforms 4: 361-380. https://doi.org/10.1002/esp.3290040406
  19. Knighton, A.D. 1999. Downstream variation in stream power. Geomorphology 29: 293-306. https://doi.org/10.1016/S0169-555X(99)00015-X
  20. Lienkaemper, G.W. and Swanson, F.J. 1987. Dynamics of large woody debris in streams in old-growth Douglas-fir forests. Canadian Journal of Forest Research 17: 150-156. https://doi.org/10.1139/x87-027
  21. Marcus, W.A., Marston, R.A., Colvard, C.R. Jr. and Gray, R.D. 2002. Mapping the spatial and temporal distributions of woody debris in streams of the Greater Yellowstone Ecosystem, USA. Geomorphology 44: 323-335. https://doi.org/10.1016/S0169-555X(01)00181-7
  22. Martin, D.J. and Benda, L.E. 2001. Patterns of instream wood recruitment and transport at the watershed scale. Transactions of the American Fisheries Society 130: 940-958. https://doi.org/10.1577/1548-8659(2001)130<0940:POIWRA>2.0.CO;2
  23. May, C.L. and Gresswell, R.E. 2003. Large wood recruitment and redistribution in headwater streams in the southern Oregon Coast Range, U.S.A. Canadian Journal of Forest Research 33: 1352-1362. https://doi.org/10.1139/x03-023
  24. Montgomery, D.R., Collins, B.D., Buffington, J.M. and Abbe, T.B. 2003. Geomorphic effects of wood in rivers. pp. 21-47. In: S.V. Gregory, K.L. Boyer and A.M. Gurnell, ed. The Ecology and Management of Wood in World Rivers (American Fisheries Society Symposium 37). American Fisheries Society. Bethesda, MD, U.S.A.
  25. Mossop, B. and Bradford, J. 2004. Importance of large woody debris for juvenile Chinook salmon habitat in small boreal forest streams in the upper Yukon River basin, Canada. Canadian Journal of Forest Research 34: 1955-1966. https://doi.org/10.1139/x04-066
  26. Moulin, B. and Piegay, H. 2004. Characteristics and temporal variability of large woody debris trapped in a reservoir on the River Rhone (Rhone): implications for river basin management. River Research and Applications 20:79-97. https://doi.org/10.1002/rra.724
  27. Naiman, R.J., Fetherston, K.L., McKay, S.J., and Chen, J. 1998. Riparian forests. pp. 289-323. In: R.J. Naiman and R.E. Bilby, ed. River ecology and management. Springer, New York, U.S.A.
  28. Nakamura, F. and Swanson, F.J. 1993. Effects of coarse woody debris on morphology and sediment storage of a mountain stream system in western Oregon. Earth Surface Processes and Landforms 18: 43-61. https://doi.org/10.1002/esp.3290180104
  29. Nakamura, F. and Swanson, F.J. 1994. Distribution of coarse woody debris in a mountain stream, western Cascade Range, Oregon. Canadian Journal of Forest Research 24: 2395-2403. https://doi.org/10.1139/x94-309
  30. Nakamura, F., Swanson, F.J. and Wondzell, S.M. 2000. Disturbance regimes of stream and riparian systems: a disturbance- cascade perspective. Hydrological Processes 14:2849-2860. https://doi.org/10.1002/1099-1085(200011/12)14:16/17<2849::AID-HYP123>3.0.CO;2-X
  31. Nakamura, F., Shin, N. and Inahara, S. 2007. Shifting mosaic in maintaining diversity of floodplain tree species in the northern temperate zone of Japan. Forest Ecology and Management 241: 28-38. https://doi.org/10.1016/j.foreco.2006.12.022
  32. Piegay, H. 2003. Dynamics of wood in large rivers. pp. 109-133. In: S.V. Gregory, K.L. Boyer and A.M. Gurnell, ed. The Ecology and Management of Wood in World Rivers (American Fisheries Society Symposium 37). American Fisheries Society. Bethesda, MD, U.S.A.
  33. Richardson, J.S., Bilby, R.E. and Bondar, C.A. 2005. Organic matter dynamics in small streams of the Pacific Northwest. Journal of the American Water Resources Association 41: 921-934.
  34. Seo, J.I. and Nakamura, F. 2009. Scale-dependent controls upon the fluvial export of large wood from river catchments. Earth Surface Processes and Landforms 34:786-800. DOI 10.1002/esp.1765.
  35. Seo, J.I., Nakamura, F., and Chun, K.W. 2010. Dynamics of large wood at the watershed scale: a perspective on current research limits and future directions. Landscape and Ecological Engineering 6: 271-287. DOI 10.1007/s11355-010-0106-3.
  36. Seo, J.I., Nakamura, F., Nakano, D., Ichiyanagi, H., and Chun, K.W. 2008. Factors controlling the fluvial export of large woody debris, and its contribution to organic carbon budgets at watershed scales. Water Resources Research 44:W04428. DOI 10.1029/2007WR006453.
  37. Swanson, F.J., and Lienkaemper, G.W. 1978. Physical consequences of large organic debris in Pacific Northwest streams. General Technical Report PNW-69: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR, U.S.A.
  38. Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R., and Cushing, C.E. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130-137. https://doi.org/10.1139/f80-017
  39. Wipfli, M.S., Richardson, J.S., and Naiman, R.J. 2007. Ecological linkages between headwaters and downstream ecosystems: transport of organic matter, invertebrates, and wood down headwater channels. Journal of the American Water Resources Association 43: 72-85. https://doi.org/10.1111/j.1752-1688.2007.00007.x
  40. Wohl, E. and Jaeger, K. 2009. A conceptual model for the longitudinal distribution of wood in mountain streams. Earth Surface Processes and Landforms 34: 329-344. DOI 10.1002/esp.1722.