• Title/Summary/Keyword: biodegradation,

Search Result 1,040, Processing Time 0.024 seconds

Biodegradation Study of Gasoline Oxygenates by Butane-Utilizing Microorganisms (부탄 분해 미생물을 이용한 휘발유 첨가제의 분해특성)

  • 장순웅
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.27-34
    • /
    • 2003
  • In this study, potential degradation of MTBE and other gasoline oxygenates by pure culture ENV425 and mixed culture isolated from gasoline contaminated soil using butane as the sources of carbon and energy was examined and compared. Butane monooxygenases(BMO) of butane-grown ENV425 and mixed culture generated 1-butanol as a major metabolite of butane oxidation and addition of acetylene, specific inhibitor of monooxygenase, inhibited both butane oxidation and 1-butanol production. The results described in this study suggest that alkanes including propane, pentane, and butane are effectively utilized as a growth substrate to oxidize MTBE cometabolically. And also BTEX compounds could be the potential substrate of the MTBE cometabolism. Cell density also affected on the MTBE degradation and transformation capacity(Tc). Increasing cell density caused increasing MTBE degradation but decreased transformation capacity. Other result demonstrated that MTBE and other gasoline oxygenates, ETBE and TAME, were degraded by butane-grown microorganism.

Phytoremediation Study of Disel Contaminated Soil by Indigenous Poplar Tree (국내 자생 포플러나무에 의한 디젤오염토양 정화특성 연구)

  • Chaog Soon-Woong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.5
    • /
    • pp.51-58
    • /
    • 2006
  • In this study, uptake and toxicity of disel (TPH) by poplar specie, $P.\;nigra{\times}P.\;maximowiczii$ were assessed in laboratory soil column experiments. Poplar cuttings were grown for 2 months and exposed to various concentration (0, 200, 500, 1000, 2000 mg/kg) of disel for a period of 60 days. For disel removal experiments, disel was effectively removed in the range of lower concentration. but, the removal rate of disel was rapidly decreased as increasing initial disel concentrations. For the this reason, toxicity effetcs were evaluated by measuring in poplar cutting mass variation and monitoring transpiration. Exposure on higher disel concentration resulted in decrease of biomass and transpiration accompanied by chlorosis and abscission, indicating toxic effect of disel on the poplar tree. And also, we have observed that both removal efficiency of disel and the microbial activity were higher at the bottom of the soil column. It was suggested that the plant formed the root zone at contaminated soil, stimulated microbial activity by plant root exudates, and played an important role in enhanced biodegradation of disel.

Preparation and Characterization of BICND-loaded Multi-Layer PLGA Wafer Containing Glycolide Monomer (글리콜라이드 단량체를 함유한 BICNU 함유 다중층 PLGA웨이퍼의 제조 및 특성결정)

  • 채강수;이진수;정제교;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.335-343
    • /
    • 2004
  • Carmustine (l,3-bis(2-chloroethyI)-1-nitrosourea, BICNU) used as antineoplastic drug for the treatment of brain tumor is not appropriate for the long term delivery, because it has short biological half life. Therefore, poly(D,L-lactide-co-glycolide) (PLGA) is useful as drug carrier for the long term delivery due to bulk erosion property. Glycolide monomer is applied to release of BICNU owing to non-toxic and monomeric components after biodegradation of PLGA. In this study, BICNU-loaded PLGA wafers with or without glycolide monomer were fabricated by conventional direct compression method for the sustained release of BICNU. These wafers were observed for their release profiles of BICNU and degradation rates by SEM, NMR, and GPC. Furthermore, we make multi-layer wafers and compare them with release profiles of conventional wafer. From these results, drug release of BICNU-loaded PLGA wafers was increased with increasing the glycolid monomer contents. We confirmed that glycolide monomer and BICNU contents in barrier-layer influenced the drug release profiles and degradation rate.

Photopolymerization and Properties of PCL-Based Biodegradable Molecularly Imprinted Polymers (PCL 기반 생분해성 분자 날인 고분자의 광중합 및 물성)

  • Kim, Sun-Hui;Lee, Kyung-Soo;Kim, Yong-Hoon;Choi, Woo-Jin;Kim, Beom-Soo;Kim, Eung-Kook;Kim, Dae-Su
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.153-159
    • /
    • 2007
  • Biodegradable molecularly imprinted polymers (MIPs) can be applied in the biomedical area of biosensors, drug delivery, etc. Therefore, in this study, biodegradable theophylline MIPs were synthesized via photopolymerization using a poly $(\varepsilon-caprolactone)$ (PCL) macromer as a cross-linker and their physical properties were investigated. The yield for the synthesis of the PCL macromer with terminal acrylate groups was ca. 78 mol%. The products were characterized by the combination of FT-IR and $^1H-NMR$ spectroscopic analyses. UV/Visible spectroscopic analysis for removing and rebinding theophylline was performed by monitoring the theophylline concentration in the solution. In vitro biodegradation tests of the theophylline MIPs performed in phosphate buffered saline (PBS) solution at $37^{\circ}C$ showed good biodegradability of the MIPs.

Degradation characteristics and upgrading biodegradability of phenol by dielectric barrier discharge plasma using catalyst (촉매 물질을 적용한 유전체 장벽 방전 플라즈마의 페놀 분해 특성 및 생분해도 향상)

  • Shin, Gwanwoo;Choi, Seungkyu;Kim, Jinsu;Weon, Kyoungja;Lee, Sangill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.1
    • /
    • pp.75-83
    • /
    • 2020
  • This study investigated the degradation characteristics and biodegradability of phenol, refractory organic matters, by injecting MgO and CaO-known to be catalyst materials for the ozonation process-into a Dielectric Barrier Discharge (DBD) plasma. MgO and CaO were injected at 0, 0.5, 1.0, and 2 g/L, and the pH was not adjusted separately to examine the optimal injection amounts of MgO and CaO. When MgO and CaO were injected, the phenol decomposition rate was increased, and the reaction time was found to decrease by 2.1 to 2.6 times. In addition, during CaO injection, intermediate products combined with Ca2+ to cause precipitation, which increased the COD (chemical oxygen demand) removal rate by approximately 2.4 times. The biodegradability of plasma treated water increased with increase in the phenol decomposition rate and increased as the amount of the generated intermediate products increased. The biodegradability was the highest in the plasma reaction with MgO injection as compared to when the DBD plasma pH was adjusted. Thus, it was found that a DBD plasma can degrade non-biodegradable phenols and increase biodegradability.

Isolation of 2,4,5-Trichlorophenoxyacetic Acid-Degrading Bacteria (2,4,5-trichlorophenoxyacetic acid 를 분해하는 세균의 분리)

  • Park, Young-Doo;Eum, Jin-Seong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.1
    • /
    • pp.47-51
    • /
    • 2000
  • 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading bacterial strains were isolated from rice field and field in suburbs of Taejon. Of the total 100 isolates, 19 strains were selected by fast growth on solid minimal media containing 2,4,5-T as a sole of carbon and energy, and they were identified to genus level. 11 strains were identified as Pseudomonas, 4 strains as Acinetobacter, 1 strains were as Alcaliagenes and 3 strains were not identified. Strains MU19 and MU92 which were identified as Pseudomonas were capable of degradation for 4 kinds of chlorinated aromatic hydrocarbons, 2,4-D, 2,4,5-T, MCPA and 3CB. Acinetobacter sp. MU38 showed the highest degradability in liquid minimal media at 48 hours after inoculation, and Pseudomonas spp. MU19. MU57, MU73, and MU92 were able to degrade carbon source at higher rates. As the results Acinetobacter sp. MU38 and Pseudomonas spp. MU19 and MU92 were capable of biodegradation for broad range of halogenated aromatic hydrocarbons, and had higher rates of degradation for 2,4,5-T.

  • PDF

Microbial Decomposition of s-Triazine Herbicides, Atrazine and Simazine by a TNT-degrading Bacterium (TNT-분해세균에 의한 s-Triazine계 제초제인 Atrazine과 Simazine의 미생물학적 분해)

  • 오계헌;이명석;장효원;소재성
    • Korean Journal of Microbiology
    • /
    • v.36 no.3
    • /
    • pp.209-215
    • /
    • 2000
  • The purpose of U7is work was to iilvestigate the degradation of s-h~azine hel-hicidcs, ahilzine and simazine by TNT-degrader under several relevaut physicochemical environ~nental parameters. TNT-degrader showed effective degradability of atrazine and snnazine as well. Both atrazme (GO 1i1~11) and simazine ( 4 5 rng//) were completely degraded within 30 hrs and 4 days of incubation, respectively. As d ~ e concentrations of atrazine and sunazine increased in the media, the degradation ofthose compounds were delayed. Additional caubans were essential to degrade atrazine and simazule, and no degradation was achieved in the absence of additional carbons. The effect of supplemented nitrogens on the degradation of atrazine and sunazine was evalualed. Addition of a suppleinented nitrogen in he growth medium containing ah-azine or siinazine showed partial degr-adation olihose herbicides duriug the incubation period. However, complete degradation of atrazine and simazu~e was examined ul the absence or any supplemented nitrogens. Addltion of yeast extract in this study was inhibilory to atrazine aud siinazine degradations, respectively. TNT-degrader was a small Gram-negative cocco-bacillus. Physiological analysis using BIOLOG sysleln revealed that this strain was Ste~~ol~~opl~orno~~ns rrialtophilia.

  • PDF

Cloning of Dechlorination Genes Specifying Biodegradation of Toxic 4-Chlorobiphenyl (유독성 4-Chlorobiphenyl의 생분해를 위한 탈염소화 유전자의 클로닝)

  • Kim, Chi-Kyung;Chae, Jong-Chan;Han, Jae-Jin
    • Korean Journal of Microbiology
    • /
    • v.32 no.2
    • /
    • pp.126-131
    • /
    • 1994
  • The pchABCD genes in Pseudomonas sp. DJ-12 speciyin degradation o 4-chlorobiphenyl(4CB) were cloned in Eschericia coli. The cloned cells of E. coli CU1 and CU101 showed to produce 2,3-dihydroxybiphenyl (2,3-DHBP) from 4-chlorobiphenyl by dechlorination, as Pseudomonas so. DJ-12 produced 2,3-DHBP from both biphenyl and 4CB. In particular, E. coli CU101 transformed with the recombinant plasmid of pCU101 revealed dechlorination activity to produce 2,3-DHBP from 4CB without production of 4-chlorobenzoic acid. Therefore, the pcbAB genes (2.2 kb in size) cloned from the chromosome of Pseudomonas sp. DJ-12 were found to have dechlorination activity on 4CB to produce 2,3-DHNP.

  • PDF

Preparation and Characterization of Lactic Acid Bacteria Encapsuled with Alginate Microsphere (유산균을 함유한 알긴산 미세입자의 제조와 특성)

  • Choi, Chang-Yong;Kang, Seong-Koo;Park, Seok-Kyu;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1754-1759
    • /
    • 2007
  • This study is performed to assess the preparation and characterization of lactic acid bacteria (Sterpoccoccus thermophilus) loaded with alginate microsphere using alginate and chitosan for the efficient delivery of lactic acid bacteria to large intestine. Size and morphology of alginate microsphere were confirmed $6{\sim}10{\mu}m$ with spherical shape by scanning electronic microscope (SEM). Biodegradation study of alginate was investigated at different buffer solutions (pH 1.2 and 7.4). This result showed that alginate microsphere did not degrade at pH 1.2 buffer solution but it's degradation occurred from first day at pH 7.4 buffer solution. Survivability test of lactic acid bacteria in alginate microsphere showed that it was keeping activity of lactic acid bacteria by chroma meter. Therefore, the introduction of alginate microsphere might be a potential system to efficiently delivery lactic acid to large intestine.

Catching efficiency and development of the biodegradable monofilament gill net for snow crab, Chionoecetes opilio (생분해성 대게 자망용 단일섬유 개발과 어획성능)

  • Park, Seong-Wook;Park, Chang-Doo;Bae, Jae-Hyun;Lim, Ji-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.1
    • /
    • pp.28-37
    • /
    • 2007
  • In order to develop the biodegradable monofilament gill net for the protection of marine ecosystem and reduction of ghost fishing, enpol monofilament gill net was made for Chionoecetes opilio using polybutylene succinate as a biodegradable chip. Catching efficiency on 2 type monofilament gill net, PA and Enpol, were carried out using 2 commercial fishing boats around the fishing ground of Wang-dol rock from January 2004 to May 2006. Enpol monofilament gill net spun polybutylene succinate as a biodegradable chip was appeared high practicality for Chionoecetes opilio gill net. Target fishing ratio were 98% and 98.3% for the PA and enpol monfilament gill net, respectively. In addition, CPUE ratio of female and male(CL < 90mm) to Chionoecetes opilio caught in the enpol gill net were 25.3-40.3%, 14.0-22.1% less than PA gill net, respectively. However, CPUE ratio of male(CL > 90mm) to Chionoecetes opilio caught in the enpol gill net were 2.5-11.3% more than PA gill net. There was no difference in CPUE of female and male to Chionoecetes opilio caught using 2 gill nets as a result of the significance level of 5% by T-test.