Photopolymerization and Properties of PCL-Based Biodegradable Molecularly Imprinted Polymers

PCL 기반 생분해성 분자 날인 고분자의 광중합 및 물성

  • Kim, Sun-Hui (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Kyung-Soo (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Yong-Hoon (Department of Chemical Engineering, Chungbuk National University) ;
  • Choi, Woo-Jin (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Beom-Soo (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Eung-Kook (Department of School of Medicine, Chungbuk National University) ;
  • Kim, Dae-Su (Department of Chemical Engineering, Chungbuk National University)
  • 김선희 (충북대학교 공과대학 화학공학과) ;
  • 이경수 (충북대학교 공과대학 화학공학과) ;
  • 김용훈 (충북대학교 공과대학 화학공학과) ;
  • 최우진 (충북대학교 공과대학 화학공학과) ;
  • 김범수 (충북대학교 공과대학 화학공학과) ;
  • 김응국 (충북대학교 의과대학) ;
  • 김대수 (충북대학교 공과대학 화학공학과)
  • Published : 2007.03.31

Abstract

Biodegradable molecularly imprinted polymers (MIPs) can be applied in the biomedical area of biosensors, drug delivery, etc. Therefore, in this study, biodegradable theophylline MIPs were synthesized via photopolymerization using a poly $(\varepsilon-caprolactone)$ (PCL) macromer as a cross-linker and their physical properties were investigated. The yield for the synthesis of the PCL macromer with terminal acrylate groups was ca. 78 mol%. The products were characterized by the combination of FT-IR and $^1H-NMR$ spectroscopic analyses. UV/Visible spectroscopic analysis for removing and rebinding theophylline was performed by monitoring the theophylline concentration in the solution. In vitro biodegradation tests of the theophylline MIPs performed in phosphate buffered saline (PBS) solution at $37^{\circ}C$ showed good biodegradability of the MIPs.

생분해성 분자 날인 고분자는 바이오센서 약물 전달 등의 생의학적 분야에 적응이 가능하다. 그러므로, 본 연구에서는 생분해성 고분자인 $poly(\varepsilon-caprolactone)$ (PCL) 매크로머를 가교제로 사용하여 theophylline 분자 날인 고분자를 광중합을 통해 제조하고 물성을 조사하였다. PCL 매크로머는 말단에 아크릴기를 갖도록 합성하였으며 FT-IR과 $^1H-NMR$로 확인하였다. PCL 매크로머의 합성수율은 약 78 mol%였다. Theophylline의 제거 및 재결합 실험은 UV/Vis분광기를 이용하여 용액 내 theophylline의 농도를 확인함으로써 이루어졌다. Theophylline분자 날인 고분자의 생분해성 실험을 $37^{\circ}C$의 PBS 용액 내에서 진행한 결과 우수한 생분해성을 보였다.

Keywords

References

  1. G. Wulff, Molecular Interactions in Bioseperstions, T. Ngo, Editor, Plenium Press, New York, p.363 (1993)
  2. S. H. Cheong, M. G. Suh, J. K. Park, and I. Karube, J. Kor. Ins. Chem. Eng., 36, 1, 27 (1998)
  3. M. Kamiyama, T. Takeuchi, T. Mukawa, and H. Asanuma, Molecular Imprinting from Fundamentals to Applications, Wiley- VCH, Weinheim, p.12 (2003)
  4. G. Wulff, Angew. Chem. Int. Engl., 34, 1812 (1995)
  5. D. Kriz and K. Mosbach, Anal. Chim. Acta., 300, 71 (1994)
  6. S. A. Piletsky, E.V. Piletska, A. Bossi, K. Karim, P. Lowe, and A. P. F. Turner, Biosens. Bioelectron., 16, 701 (2001) https://doi.org/10.1016/S0956-5663(00)00126-3
  7. J. Matsui, I. A. Nicholls, and T. Takeuchi, Analytica Chimica Acta., 365, 89 (1998)
  8. B. Andrea, A. Tolokan, G. Horvai, V. Horvath, F. Lanza, A. J. Hall, and B. Sellergren, J. Chromatogr. A, 930, 31 (2001) https://doi.org/10.1016/S0021-9673(01)01187-6
  9. N. Masque, M. Marce, and F. Borrull, TrAC, 20, 477 (2001)
  10. R. J. Ansell, D. Kriz, and F. Borrull, Curr. Opin. Biotechnol., 7, 89 (2001)
  11. J. Mathew-Krotz and K. J. Shea, J. Am. Chem. Soc., 118, 8154 (1996)
  12. J. M. Hong, P. E. Andersson, J. Qian, and C. R. Martin, Chem. Msster., 10, 1029 (1998)
  13. M. J. Yoshikawa, J. Izumi, and T. Kitao, Chem. Lett., 8, 611 (1996)
  14. M. J. Yoshikawa, J. Izumi, T. Kitao, and S. Sakamoto, Mscromol., 29, 8197 (1996)
  15. M. J. Yoshikawa, J. Izumi, and T. Kitao, Polym. J., 29, 205 (1997) https://doi.org/10.1295/polymj.29.997
  16. S. H. Cheong, C. Y. Oh, J. I. Seo, and J. K. Park, Korean J. Biotechnol. Bioeng., 16,115 (2001)
  17. R. S. Bezwada, D. D. Jamiolkowski, I. Y. Lee, V. Agarwal, J. Persival, S. Treka-Benthin, M. Erneta, J. Suryadevara, A. Yang, and S. Liu, Biomaterials, 16, 1141 (1995)
  18. P. D. Darney, S. E. Moroe, C. M. Klaisle, and A. Alvarado, Am. J. Obstet. Gynecol., 160, 1292 (1989)
  19. S. C. Woodward, P. S. Brewer, and F. Moatamed, J. Biomed. Mater. Res., 44, 437 (1985)
  20. G. G. Pitt, M. M. Gratzei, G. L. Kimmei, J. Surles, and A. Schindler, Biomaterials, 2, 215 (1981)
  21. K. S. Lee, D. S. Kim, and B. S. Kim, 'Biodegradable Molecularly Imprinted Polymers', Biotechnol, Bioproc. Eng., in press
  22. B. S. Kim and K. S. Lee, Kor. Patent 100637683 (2006)
  23. D. S. Kim and W. H. Seo, J. Appl. Polym. Sci., 92, 3921 (2004) https://doi.org/10.1002/app.20422
  24. G. Ciardeli, B. Cioni, C. Cristallini, N. Barbani, D. Silvestri, and P. Giusti, Biosens. Bioelectron., 20, 1083 (2004) https://doi.org/10.1016/j.bios.2004.06.028
  25. H. Y. Kweon, M. K. Yoo, I. K. Park, T. H. Kim, H. C. Lee, H. S. Lee, J. S. Oh, T. Akaike, and C. S. Cho, Biomaterials, 24, 801 (2003) https://doi.org/10.1016/S0142-9612(02)00370-8
  26. A. J. Domb, J. Kost, and D. M. Wiseman, Handbook of Biodegradable Polymers, Hardwood Academic Publishers, Amsterdam, Netherland, p.70-72 (1997)