• 제목/요약/키워드: biocontrol activity

검색결과 297건 처리시간 0.024초

포도 잿빛곰팡이병의 생물적 방제를 위한 길항세균 선발 (Selection of Antagonistic Bacteria for Biocontrol of Botrytis cinerea Causing Gray Mold on Vitis spp)

  • 서상태;박종한;한경숙;정승룡
    • 식물병연구
    • /
    • 제12권3호
    • /
    • pp.267-271
    • /
    • 2006
  • Botrytis cinerea에 의한 포도 잿빛곰팡이병은 특히 하우스 재배시 큰 피해를 주는 병원 진균이다. Pseudomonas속 세균들은 토양 미생물중 가장 잘 연구되어 있고, 토양 내에서 중요한 역할을 담당하고 있다. 근권토양에서 분리한 형광성 Pseudomonas속 세균 83균주 중 P84균주는 실내 항균력 실험결과 다양한 식물병원진균(Phytophthora capsici, Sclerotium spp., Botryosphaeria dothidea, Fusarium spp.)에 대해 항균효과를 나타내었다. 생리적 실험과 유전적 실험결과 P84균주는 P. putida로 동정되었다. 이 세균의 항균력은 항생물질(2,4-diacetylphloroglucinol)의 생산과 관련되어 있는 것으로 사료되며, 이 세균이 포도 잿빛곰팡이병의 생물적 방제에 이용될 수 있는 가능성이 시사되었다.

Attenuated Secretion of the Thermostable Xylanase xynB from Pichia pastoris Using Synthesized Sequences Optimized from the Preferred Codon Usage in Yeast

  • Huang, Yuankai;Chen, Yaosheng;Mo, Delin;Cong, Peiqing;He, Zuyong
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권3호
    • /
    • pp.316-325
    • /
    • 2012
  • Xylanase has been used extensively in the industrial and agricultural fields. However, the low-yield production of xylanase from native species cannot meet the increasing demand of the market. Therefore, improving the heterologous expression of xylanase through basic gene optimization may help to overcome the shortage. In this study, we synthesized a high-GC-content native sequence of the thermostable xylanase gene xynB from Streptomyces olivaceoviridis A1 and, also designed a slightly AT-biased sequence with codons completely optimized to be favorable to Pichia pastoris. The comparison of the sequences' expression efficiencies in P. pastoris X33 was determined through the detection of single-copy-number integrants, which were quantified using qPCR. Surprisingly, the high GC content did not appear to be detrimental to the heterologous expression of xynB in yeast, whereas the optimized sequence, with its extremely skewed codon usage, exhibited more abundant accumulation of synthesized recombinant proteins in the yeast cell, but an approximately 30% reduction of the secretion level, deduced from the enzymatic activity assay. In this study, we developed a more accurate method for comparing the expression levels of individual yeast transformants. Moreover, our results provide a practical example for further investigation of what constitutes a rational design strategy for a heterologously expressed and secreted protein.

Evaluation of the Biocontrol Potential of Some Medicinal Plant Materials Alone and in Combination with Trichoderma harzianum Against Rhizoctonia solani AG 2-1

  • Lee, Hye-Min;Khan, Zakaullah;Kim, Sang-Gyu;Baek, Nam-In;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • 제27권1호
    • /
    • pp.68-77
    • /
    • 2011
  • Fifty five species of medicinal plant materials were tested for their antifungal activity in vitro against Rhizoctonia solani AG 2-1 and Trichoderma harzianum to select plant species that can be used to improve the biocontrol efficacy of T. harzianum. Six species were effective against R. solani AG 2-1 but were also antagonistic to T. harzianum, except for Cinnamomum loureirii stem bark (CSB). CSB inhibited mycelial growth of R. solani AG 2-1 by 73.7% but showed an inhibitory effect on mycelial growth of T. harzianum by only 2.2%. Scanning electron microscophs showed that the CSB treatment resulted in deformed R. solani AG 2-1 hyphal cells, and transmission electron microscophs revealed degenerated cell structures such as degenerated cytoplasm and disentangled cell wall and the accumulation of electron-dense inclusions (asterisks) in the CSB treatment. The biocontrol efficacy of radish damping-off increased greatly following the combined treatments of T. harzianum and CSB and the combined treatment increased efficacy from 6.4-23.1% to 37.1-87.3% compared with either treatment alone. CSB did not affect T. harzianum population growth, as it was almost the same in rice-bran peat medium (culture) amended with 0.1% and 1.0% CSB powder as in non-amended medium. The formulation of T. harzianum in rice-bran peat medium amended with CSB powder reduced the severity of radish damping-off by 80.6%, suggesting that T. harzianum and CSB can be formulated as a biocontrol product for the control of R. solani AG 2-1.

In Vivo Screening for Biocontrol Agents (BCAs) against Streptomyces scabiei Causing Potato Common Scab

  • Lee, Hyang-Burm;Cho, Jong-Wun;Park, Dong-Jin;Li, Chang-Tian;Ko, Young-Hwan;Song, Jeong-Heub;Koh, Jeong-Sam;Kim, Bum-Joon;Kim, Chang-Jin
    • The Plant Pathology Journal
    • /
    • 제20권2호
    • /
    • pp.110-114
    • /
    • 2004
  • Through in vitro screening for biocontrol agents (BCAs) against Streptomyces scabiei causing potato (Solanum tuberosum) common scab, 19 streptomycete and 17 fungal isolates with antagonistic activity were selected as BCA candidates. For the selection of BCA candidates which are highly resistant to 10 kinds of antibiotics or pesticides, chemical susceptibility testing was initially performed in vitro. A remarkable degree of variation in susceptibility to antibiotics or pesticides was observed among the isolates tested. Streptomycete A020645 isolate was highly resistant to all the tested chemicals except neomycin up to 5,000 ppm. On the other hand, out of 36 antagonistic microbes subjected to in vivo pot tests using cultivar Daejima, four streptomycete isolates namely, A020645, A010321, A010564, and A020973, showed high antagonistic activity with >60% and 55% control value, respectively, and high chemical resistance to 10 kinds of chemicals. Therefore, these isolates were selected as potential BCAs for the control of potato common scab.

Broad-Spectrum Activity of Volatile Organic Compounds from Three Yeast-like Fungi of the Galactomyces Genus Against Diverse Plant Pathogens

  • Cai, Shu-Ting;Chiu, Ming-Chung;Chou, Jui-Yu
    • Mycobiology
    • /
    • 제49권1호
    • /
    • pp.69-77
    • /
    • 2021
  • The application of antagonistic fungi for plant protection has attracted considerable interest because they may potentially replace the use of chemical pesticides. Antipathogenic activities confirmed in volatile organic compounds (VOCs) from microorganisms have potential to serve as biocontrol agents against pre- and post-harvest diseases. In the present study, we investigated Galactomyces fungi isolated from rotten leaves and the rhizosphere of cherry tomato (Lycopersicon esculentum var. cerasiforme). VOCs produced by Galactomyces fungi negatively affected the growth of phytopathogenic fungi and the survival of nematodes. Mycelial growths of all nine examined phytopathogenic fungi were inhibited on agar plate, although the inhibition was more intense in Athelia rolfsii JYC2163 and Cladosporium cladosporioides JYC2144 and relatively moderate in Fusarium sp. JYC2145. VOCs also efficiently suppressed the spore germination and mycelial growth of A. rolfsii JYC2163 on tomatoes. The soil nematode Caenorhabditis elegans exhibited higher mortality in 24 h in the presence of VOCs. These results suggest the broad-spectrum activity of Galactomyces fungi against various plant pathogens and the potential to use VOCs from Galactomyces as biocontrol agents.

Peribacillus butanolivorans KJ40, Bacillus zanthoxyli HS1, B. siamensis H30-3와 Pseudomonas sp. BC42에 의한 오이 탄저병, 박과류 과실썩음병과 오이 덩굴쪼김병의 생물방제 효과검정 (Biocontrol Activities of Peribacillus butanolivorans KJ40, Bacillus zanthoxyli HS1, B. siamensis H30-3 and Pseudomonas sp. BC42 on Anthracnose, Bacterial Fruit Blotch and Fusarium Wilt of Cucumber Plants)

  • 김지원;상미경
    • 식물병연구
    • /
    • 제29권2호
    • /
    • pp.188-192
    • /
    • 2023
  • 식물병 또는 비생물적 스트레스를 감소시키는 것으로 보고된 세균 4종(HS1, H30-3, KJ40 와 BC42)이 Colletotrichum orbiculare 에 의한 오이 탄저병, Acidovorax citrulli에 의한 과실썩음병, Fusarium oxysporum에 의한 오이 덩굴쪼김병에 대한 병 억제 효과가 있는지 검정하였다. HS1, H30-3, KJ40 와 BC42를 토양에 관주처리 할 경우 유도저항성에 의해 오이 탄저병이 감소하였고, KJ40와 BC42는 A. citrulli의 발병을, BC42는 오이 덩굴쪼김병을 억제하였다. 따라서, KJ40은건조피해저감뿐만아니라유도저항성에의 한 오이 탄저병 억제 및 A. citrulli에 의한 병발생 감소효과를 가지며, BC42는 오이 탄저병, A. citrulli와 F. oxysporum에 병을 모두 억제하는 것으로 보아 넓은 범위의 적용 범위를 갖는 생물적 방제제 자원으로 활용할 수 있을 것이다.

Isolation and Characterization of a Novel Broad-host-range Bacteriophage Infecting Salmonella enterica subsp. enterica for Biocontrol and Rapid Detection

  • Choi, In Young;Lee, Ju-Hoon;Kim, Hye-jin;Park, Mi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권12호
    • /
    • pp.2151-2155
    • /
    • 2017
  • Bacteriophages have gained substantial attention as biocontrol and biorecognition agents, substituting antibodies. In this study, a Salmonella Enteritidis-specific bacteriophage, KFS-SE1, was isolated, identified, and characterized. This Siphoviridae phage infects S. Enteritidis with high specificity. This phage is highly stable under various pH (5-11), temperature ($4-60^{\circ}C$), and organic solvent conditions. The KFS-SE1 genome consisted of 59,715 bp with 73 predicted open reading frames and 57.14% GC content; it had a complete set of genes required for phage reconstruction. Comparative phylogenetic analysis of KFS-SE1 revealed that it was very similar to the other Salmonella phages in the Siphoviridae family. These characteristics suggest that KFS-SE1 with its high specificity and host lysis activity toward S. Enteritidis may have various potential applications.

Potential of Epicoccum purpurascens Strain 5615 AUMC as a Biocontrol Agent of Pythium irregulare Root Rot in Three Leguminous Plants

  • Koutb, Mostafa;Ali, Esam H.
    • Mycobiology
    • /
    • 제38권4호
    • /
    • pp.286-294
    • /
    • 2010
  • Epicoccum purpurascens stain 5615 AUMC was investigated for its biocontrol activity against root rot disease caused by Pythium irregulare. E. purpurascens greenhouse pathogenicity tests using three leguminous plants indicated that the fungus was nonpathogenic under the test conditions. The germination rate of the three species of legume seeds treated with a E. purpurascens homogenate increased significantly compared with the seeds infested with P. irregulare. No root rot symptoms were observed on seeds treated with E. purpurascens, and seedlings appeared more vigorous when compared with the non-treated control. A significant increase in seedling growth parameters (seedling length and fresh and dry weights) was observed in seedlings treated with E. purpurascens compared to pathogen-treated seedlings. Pre-treating the seeds with the bioagent fungus was more efficient for protecting seeds against the root rot disease caused by P. irregulare than waiting for disease dispersal before intervention. To determine whether E. purpurascens produced known anti-fungal compounds, an acetone extract of the fungus was analyzed by gas chromatography mass spectrometry. The extract revealed a high percentage of the cinnamic acid derivative (trimethylsiloxy) cinnamic acid methyl ester. The E. purpurascens isolate grew more rapidly than the P. irregulare pathogen in a dual culture on potato dextrose agar nutrient medium, although the two fungi grew similarly when cultured separately. This result may indicate antagonism via antibiosis or competition.

Growth Promoting Rhizospheric and Endophytic Bacteria from Curcuma longa L. as Biocontrol Agents against Rhizome Rot and Leaf Blight Diseases

  • Vinayarani, G.;Prakash, H.S.
    • The Plant Pathology Journal
    • /
    • 제34권3호
    • /
    • pp.218-235
    • /
    • 2018
  • Plant growth promoting rhizobacteria and endophytic bacteria were isolated from different varieties of turmeric (Curcuma longa L.) from South India. Totally 50 strains representing, 30 PGPR and 20 endophytic bacteria were identified based on biochemical assays and 16S rDNA sequence analysis. The isolates were screened for antagonistic activity against Pythium aphanidermatum (Edson) Fitzp., and Rhizoctonia solani Kuhn., causing rhizome rot and leaf blight diseases in turmeric, by dual culture and liquid culture assays. Results revealed that only five isolates of PGPR and four endophytic bacteria showed more than 70% suppression of test pathogens in both assays. The SEM studies of interaction zone showed significant ultrastructural changes of the hyphae like shriveling, breakage and desication of the pathogens by PGPR B. cereus (RBacDOB-S24) and endophyte P. aeruginosa (BacDOB-E19). Selected isolates showed multiple Plant growth promoting traits. The rhizome bacterization followed by soil application of B. cereus (RBacDOB-S24) showed lowest Percent Disease Incidence (PDI) of rhizome rot and leaf blight, 16.4% and 15.5% respectively. Similarly, P. aeruginosa (BacDOB-E19) recorded PDI of rhizome rot (17.5%) and leaf blight (17.7%). The treatment of these promising isolates exhibited significant increase in plant height and fresh rhizome yield/plant in comparison with untreated control under greenhouse condition. Thereby, these isolates can be exploited as a potential biocontrol agent for suppressing rhizome rot and leaf blight diseases in turmeric.

Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt

  • Mahmoud, Amer F.
    • The Plant Pathology Journal
    • /
    • 제32권2호
    • /
    • pp.145-156
    • /
    • 2016
  • Fusarium graminearum Schwabe causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and other cereal crops. Twelve isolates of F. graminearum were collected from naturally infected spikes of wheat from Assiut Egypt. These isolates were compared using SRAP. The results indicated distinct genetic groups exist within F. graminearum, and demonstrated that these groups have different biological properties, especially with respect to their pathogenicity on wheat. There were biologically significant differences between the groups; with group (B) isolates being more aggressive towards wheat than groups (A) and (C). Furthermore, Trichoderma harzianum (Rifai) and Bacillus subtilis (Ehrenberg) which isolated from wheat kernels were screened for antagonistic activity against F. graminearum. They significantly reduced the growth of F. graminearum colonies in culture. In order to gain insight into biological control effect in situ, highly antagonistic isolates of T. harzianum and B. subtilis were selected, based on their in vitro effectiveness, for greenhouse test. It was revealed that T. harzianum and B. subtilis significantly reduced FHB severity. The obtained results indicated that T. harzianum and B. subtilis are very effective biocontrol agents that offer potential benefit in FHB and should be harnessed for further biocontrol applications. The accurate analysis of genetic variation and studies of population structures have significant implications for understanding the genetic traits and disease control programs in wheat. This is the first known report of the distribution and genetic variation of F. graminearum on wheat spikes in Assiut Egypt.