• Title/Summary/Keyword: biocomposite

Search Result 39, Processing Time 0.022 seconds

Synthesis and characterization of sugarcane bagasse/zinc aluminium and apple peel/zinc aluminium biocomposites: Application for removal of reactive and acid dyes

  • Safa, Yusra;Tariq, Saadia Rashid;Bhatti, Haq Nawaz;Sultan, Misbah;Bibi, Ismat;Nouren, Shazia
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.301-307
    • /
    • 2018
  • In this research work, synthesis of sugarcane bagasse/zinc aluminium biocomposite and apple peel/zinc aluminium biocomposite and their application for removal of Reactive Red-241 and Acid Orange-7, respectively, was studied using various parameters. At pH 2 the sorption was the highest for both dyes. The trend showed that the dye sorption declined by decreasing the biocomposite dose and enhanced by increasing the dye concentration and temperature. Equilibrium was achieved at 60 minutes for Reactive Red-241 onto sugarcane bagasse/zinc aluminium biocomposite and 90 minutes for Acid Orange-7 onto apple peel/zinc aluminium biocomposite.The research data was good fitted to pseudo-2nd-order kinetic model and Langmuir isotherm. FT-IR analysis was used to confirm the biosorption of the selected dyes at the surface of biosorbent through various binding sites. Surface morphology modification of both biocomposites before and after biosorption was inspected through SEM. Crystallinity of biocomposite was examined through XRD analysis. It was implied that sugarcane bagasse/ zinc aluminium biocomposite and apple peel/ zinc aluminium biocomposite are good adsorbents for dyes elimination from aqueous solutions.

Screening of Agricultural and Food Processing Waste Materials as New Sources for Biodegradable Food Packaging Application

  • Wang, Long-Feng;Reddy, Jeevan Prasad;Rhim, Jong-Whan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.20 no.1
    • /
    • pp.7-15
    • /
    • 2014
  • Agar-based composite films were prepared with variety of food processing and agricultural processing waste materials in order to screen natural lingo-cellulosic resources for the value-added utilization of the under-utilized materials. The effect of these waste materials (10 wt% based on agar) on mechanical properties, moisture content (MC), water vapor permeability (WVP), water absorption behavior of biocomposite films were investigated. Biocomposite films prepared with various fibers resulted in significant increase or decrease in color and percent transmittance. The MC, WVP, and surface hydrophobicity of biocomposite films increased significantly by incorporation of fibers, while the water uptake ratio and solubility of the film decreased. SEM images of biocomposite film showed better adhesion between the fiber and agar polymer. Among the tested cellulosic waste materials, rice wine waste, onion and garlic fibers were promising for the value-added utilization as a reinforcing material for the preparation of biocomposite food packaging films.

  • PDF

Hybrid-Biocomposite Material for Corrosion Prevention in Pipeline: a review

  • Suriani, M.J.;Nik, W.B. Wan
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.85-89
    • /
    • 2017
  • One of the most challenging issues in the oil and gas industry is corrosion assessment and management in subsea structures or equipment. At present, almost all steel pipelines are sensitive to corrosion in harsh working environments, particularly in salty water and sulphur ingress media. Nowadays, the most commonly practiced solution for a damaged steel pipe is to entirely remove the pipe, to remove only a localized damaged section and then replace it with a new one, or to cover it with a steel patch through welding, respectively. Numerous literatures have shown that fiber-reinforced polymer-based composites can be effectively used for steel pipe repairs. Considerable research has also been carried out on the repair of corroded and gouged pipes incorporated with hybrid natural fiber-reinforced composite wraps. Currently, further research in the field should focus on enhanced use of the lesser and highly explored hybrid-biocomposite material for the development in corrosion prevention. A hybrid-biocomposite material from renewable resource based derivatives is cost-effective, abundantly available, biodegradable, and an environmentally benign alternative for corrosion prevention. The aim of this article is to provide a comprehensive review and to bridge the gap by developing a new hybrid-biocomposite with superhydrophobic surfaces.

Use and advantage of Red algae fiber as reinforcement of Biocomposite (홍조류 섬유를 보강재로 사용한 바이오복합재료의 특성)

  • Lee, Min-Woo;Seo, Yung-Bum;Han, Seong-Ok
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.11a
    • /
    • pp.93-102
    • /
    • 2007
  • Biocomposite was organized with biodegradable polymer and natural fiber that has potential to be used as replacement for glass fiber reinforced polymer composite with the benefits of low cost, low density, acceptable specific strength, biodegradability, etc. Until now, non-wood fibers have been used as reinforcements of biocomposite which are all plant-based fibers. The present study focused on investigating the fabrication and characterization of biocomposite reinforced with red algae fiber. The bleached red algae fiber(BRAF) showed very similar crystallinity to the cellulose. It has high stability against thermal degradation (maximum thermal decomposition temperature of 359.3$^{\circ}C$) and thermal expansion. Biocomposites reinforced with BRAF have been fabricated by a compression molding method and their mechanical and thermal properties have been studied. The storage modulus and the thermomechanical stability of PBS matrix are markedly improved with reinforcing the BRAF. These results support that the red algae fiber can be used as an excellent reinforcement of biocomposites as "green-composite" or "eco-composite".

  • PDF

Use of Red Algae Fiber as Reinforcement of Biocomposite (홍조류 섬유를 보강재로 사용한 바이오복합재료의 특성)

  • Lee, Min-Woo;Seo, Yung-Bum;Han, Seong-Ok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.1
    • /
    • pp.62-67
    • /
    • 2008
  • Biocomposite was fabricated with biodegradable polymer and natural fiber that has potential to be used as replacement for glass fiber reinforced polymer composite with the benefits of low cost, low density, acceptable specific strength, biodegradability, etc. Until now, mostly natural cellulosic fibers on land have been used as reinforcement for biocomposite. The present study focused on investigating the fabrication and the characterization of biocomposite reinforced with red algae fibers from the sea. The bleached red algae fiber (BRAF) showed very similar crystallinity to the wood cellulose. It has high stability against thermal degradation (maximum thermal decomposition temperature of 359.3$^{\circ}C$) and thermal expansion. Biocomposites reinforced with BRAF have been fabricated by a compression molding method and their mechanical and thermal properties have been studied. The storage modulus and the thermomechanical stability of PBS (polybuthylenesuccinate) matrix are markedly improved by reinforcing with the BRAF. These results indicate that red algae fiber can be used as an excellent reinforcement of biocomposites, which are sometimes called as "green-composites" or "eco-composites".

Preparation of hydroxyapatite/$TiO_2$ biocomposite powders by wet chemical method (습식화학법에 의한 수산화아파타이트/$TiO_2$ 생체용 복합분말의 제조)

  • 정항철;이종국
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.3
    • /
    • pp.83-89
    • /
    • 2004
  • In this work, HA/$TiO_2$ biocomposite to get high mechanical properties with biocompatibility were prepared. HA/$TiO_2$ biocomposite powders were prepared by mixing $TiO_2$ and HA powders which were synthesized through sol-gel, precipitation and hydrothermal methods. The mixing ratio was fixed at 1:1 ratio (HA/$TiO_2$, wt%). HA/$TiO_2$ biocomposite powders showed different microstructures depending on their particle size and shape. The smaller particles were coated on the surface of larger particles, whereas they were well mixed and dispersed when both $TiO_2$ and HA were nanocrystallites. HA/$TiO_2$ biocomposite powders with homogeneous microstructure showed high sintered density and good mechanical properties.

Clinical Outcomes of Arthroscopic Rotator Cuff Repair Using Poly Lactic-co-glycolic Acid Plus β-tricalcium Phosphate Biocomposite Suture Anchors

  • Chung, Seok Won;Oh, Kyung-Soo;Kang, Sung Jin;Yoon, Jong Pil;Kim, Joon Yub
    • Clinics in Shoulder and Elbow
    • /
    • v.21 no.1
    • /
    • pp.22-29
    • /
    • 2018
  • Background: This study is performed to evaluate anchor-related outcomes and complications after arthroscopic rotator cuff repair using 30% ${\beta}$-tricalcium phosphate (${\beta}$-TCP) with 70% poly lactic-co-glycolic acid (PLGA) biocomposite suture anchors. Methods: A total of 78 patients (mean age, $61.3{\pm}6.9years$) who underwent arthroscopic medium-to-large full-thickness rotator cuff tear repair were enrolled. The technique employed 30% ${\beta}$-TCP with 70% PLGA biocomposite suture anchors at the medial row (38 patients, Healix $BR^{TM}$ anchor [Healix group]; 40 patients, Fixone anchor B [Fixone group]). The radiologic outcomes (including perianchor cyst formation or bone substitution) and anatomical outcomes of the healing failure rate were evaluated using magnetic resonance imaging at least 6 months after surgery, the pain visual analogue scale at 3, 6 months, and final follow-up visit, and American Shoulder and Elbow Surgeons scores at least 1 year postoperatively. Anchor-related complications were also evaluated. Results: The perianchor cyst formation incidence was similar for both groups (60.5%, Healix group; 60.0%, Fixone group; p=0.967), although severe perianchor cyst incidence was slightly lower in the Fixone group (15.0%) than in the Healix group (21.1%). There was no occurrence of anchor absorption and bone substitution. No differences were observed in the healing failure rate (13.2%, Healix group; 15.0%, Fixone group; p=0.815) and functional outcome between groups (all p>0.05). Anchor breakage occurred in 5 patients (2 Healix anchors and 3 Fixone anchors); however, there were no major anchor-related complications in either group. Conclusions: No differences were observed in the clinical outcomes of the Healix and Fixone groups, neither were there any accompanying major anchor-related complications.

Detection of Food-Grade Hydrogen Peroxide by HRP-Biocomposite Modified Biosensors

  • Chang, Seung-Cheol
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.6
    • /
    • pp.447-454
    • /
    • 2017
  • A new amperometric biosensor has been developed for the detection of hydrogen peroxide ($H_2O_2$). The sensor was fabricated through the one-step deposition of a biocomposite layer onto a glassy carbon electrode at neutral pH. The biocomposite, as a $H_2O_2$ sensing element, was prepared by the electrochemical deposition of a homogeneous mixture of graphene oxide, aniline, and horseradish peroxidase. The experimental results clearly demonstrated of that the sensor possessed high electrocatalytic activity and responded to $H_2O_2$ with a stable and rapid manners. Scanning electron microscopy, cyclic voltammetry, and amperometry were performed to optimize the characteristics of the sensor and to evaluate its sensing chemistry. The sensor exhibited a linear response to $H_2O_2$ in the range of 10 to $500{\mu}M$ concentrations, and its detection limit was calculated to be $1.3{\mu}M$. The proposed sensing-chemistry strategy and the sensor format were simple, cost-effective, and feasible for analysis of "food-grade $H_2O_2$" in food samples.

Peri-anchor cyst formation after arthroscopic bankart repair: comparison between biocomposite suture anchor and all-suture anchor

  • Jin, Seokhwan;Chun, Yong-Min
    • Clinics in Shoulder and Elbow
    • /
    • v.23 no.4
    • /
    • pp.178-182
    • /
    • 2020
  • Background: The purpose of this study is to investigate clinical outcomes and radiological findings of cyst formation in the glenoid around suture anchors after arthroscopic Bankart repair with either biocomposite suture anchor or all-suture anchor in traumatic anterior shoulder instability. We hypothesized that there would be no significant difference in clinical and radiological outcomes between the two suture materials. Methods: This retrospective study reviewed 162 patients (69 in group A, biocomposite anchor; 93 in group B, all-suture anchor) who underwent arthroscopic Bankart repair of traumatic recurrent anterior shoulder instability with less than 20% glenoid defect on preoperative en-face view three-dimensional computed tomography. Patient assignment was not randomized. Results: At final follow-up, the mean subjective shoulder value, Rowe score, and University of California, Los Angeles shoulder score improved significantly in both groups. However, there were no significant differences in functional shoulder scores and recurrence rate (6%, 4/69 in group A; 5%, 5/93 in group B) between the two groups. On follow-up magnetic resonance arthrography/computed tomography arthrography, the incidence of peri-anchor cyst formation was 5.7% (4/69) in group A and 3.2% (3/93) in group B, which was not a significant difference. Conclusions: Considering the low incidence of peri-anchor cyst formation in the glenoid after Bankart repair with one of two anchor systems and the lack of association with recurrence instability, biocomposite and all-suture anchors in Bankart repair yield satisfactory outcomes with no significant difference.

Effects of Manufacturing Technology on the Mechanical Properties of Alfa Fiber Non-woven Reinforced PMMA Composites

  • Wanassi, Bechir;Jaouadi, Mounir;Hassan, Mohamed Ben;Msahli, Slah
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.112-117
    • /
    • 2015
  • Mechanical properties of nonwoven alfa fiber based reinforced biocomposite were evaluated to assess the possibility of using it as a new material in engineering applications such as orthopedic application. Samples were fabricated by needle punching, thermal bonding and Hydroentanglement, by blending alfa fibers with wool fibers or Polypropylene fibers. The mechanical properties were tested and showed that the nonwoven NW3 (alfa fiber/PP/PLA, with hydroentanglement) is the best. It has a value of stress at break of 1.94 MPa, a strain of 54.2% and a young's module of 7.95 MPa, in a production normal direction. A biocomposite has been made with NW3 mixed with PMMA matrix. The use of nonwoven based alfa fiber in reinforcing the composite material increases its rigidity and the tensile strength; the elongation was found to be 1.53%, the Young's Module of 1.79 GPa and the tensile at break of 15.06 MPa. Results indicated that alfa fibres are of interest for low-cost engineering applications and can compete with glass fibres in orthopedic application.