• 제목/요약/키워드: biochemical pathway

검색결과 159건 처리시간 0.027초

공통의 1차 구조를 가진 우유 지방구막 구성단백질의 당쇄 구조에 관한 생화학적 연구 (Biochemical Studies on the Sugar Chain Structure of Glycoproteins with the Same Protein Core of Bovine Milk Fat Globule Membrane)

  • 석진석
    • Journal of Dairy Science and Biotechnology
    • /
    • 제21권2호
    • /
    • pp.138-147
    • /
    • 2003
  • We here analyzed and proposed the structures of the N-linked sugar chains of PAS-7 from bovine milk fat globule membrane. The N-linked sugar chains were liberated from PAS-7 by hydrazinolysis and, after modifying the reducing ends with 2-aminopyridine (PA), were separated into one neutral (7N,55%) and two acidic (7M mono-, 43%; 7D, di-, 2%) sugar chain roups. The latter were converted into neutral groups (7MN and 7DN) by sialidase digestion. The structure of each of these PA-neutral sugar chains was determined by sugar analysis, sequential exoglycosidase digestion, partial acetolysis, and 1H-NMR spectroscopy. The results show that the 10 sugar chains were of the biantennary complex type with and without fucose. The structure of 7N2A one of the major sugar chains, was proposed as; [structure: see text] A structural comparison between PAS-6 and -7 indicated that although they shared the same protein core, their sugar moiety was markedly different, involving the existence of a different pathway during the post-transcriptional modification.

  • PDF

Tyrphostin ErbB2 Inhibitors AG825 and AG879 Have Non-specific Suppressive Effects on gp130/ STAT3 Signaling

  • Lee, Hyun-Kyoung;Seo, In-Ae;Lee, Sang-Hwa;Seo, Su-Young;Kim, Kyung-Sup;Park, Hwan-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권5호
    • /
    • pp.281-286
    • /
    • 2008
  • Although the interaction between gp130 and the ErbB family has frequently been shown in cancer cells, the mechanism of this interaction remains unclear and controversial. In the present study, we found that specific tyrphostin inhibitors of ErbB2 (AG825 and AG879), but not ErbB1 inhibitor (AG1478), suppressed IL-6-induced tyrosine phosphorylation of STAT3 in schwannoma cells. However, biochemical evidence for transactivation of ErbB2 by IL-6 was not observed. Additionally, the inhibition of ErbB2 expression, with either a specific RNAi or transfection of an ErbB2 mutant lacking the intracellular domain did not inhibit the IL-6-induced tyrosine phosphorylation of STAT3. Thus, it seems that tyrphostins, which are known as specific inhibitors of the ErbB2 kinase, may have non-specific suppressive effects on the IL-6/STAT3 pathway.

Characterization of Lactobacilli with Tannase Activity Isolated from Kimchi

  • Kwon, Tae-Yeon;Shim, Sang-Min;Lee, Jong-Hoon
    • Food Science and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.1322-1326
    • /
    • 2008
  • Tannase catalyzes the hydrolysis of gallic acid esters and hydrolysable tannins. Twenty-two Lactobacillus strains with tannase activity were isolated from 7 types of kimchi. A polymerase chain reaction-based assay targeting the recA gene assigned all isolates to either Lactobacillus plantarum or Lactobacillus pentosus. The tannase activities of isolates measured in whole cells and cell-free extracts varied even within each species. The activities of the isolates varied with the assay method, but both methods indicated that isolate LT7 (identified as L. pentosus) showed the highest activity. The results of thin layer chromatography and high performance liquid chromatography, respectively, showed that tannic acid and gallic acid degraded to pyrogallol in resting L. pentosus LT7 cells. Therefore, the putative biochemical pathway for the degradation of tannic acid by L. pentosus implies that tannic acid is hydrolyzed to gallic acid and glucose, with the formed gallic acid being decarboxylated to pyrogallol. This study revealed the possible production of pyrogallol from tannic acid by the resting cell reaction with L. pentosus LT7.

인간 전립선암 PC-3 세포에서 Compound K에 의한 세포주기 조절 및 세포사멸 유전자 발현 변화 (Profile of Gene Expression Changes Treated with Compound K Induced Cell Cycle Arrest and Cell Death of Prostate Cancer PC-3 Cell Line)

  • 김광연;박광일;안순철
    • 대한한의학방제학회지
    • /
    • 제29권4호
    • /
    • pp.267-275
    • /
    • 2021
  • Objectives : Previously, we reported that compound K isolated from fermented ginseng by Aspillus oryzae has a wide biochemical and pharmacological effect, including anti-cancer activity in prostate cancer PC-3 cells. Despite these findings, its signaling pathway and gene expression pattern are not clearly understood. Methods : To confirm the gene expression study of treated with compound K in PC-3 cells, a cDNA microarray chip composed of 44K human cDNA probes was used. MTT assay, western blot analysis, propidium iodide staining, and annexin V/propidium iodide staining were analyzed. Results : We confirmed the differences of gene expression profiles. Then, we analyzed with the cell cycle arrest, cell death and cell proliferation related genes using DAVID database. Conclusions : Our finding should be useful for understanding genome-wide expression patterns of compound K-mediated cell cycle arrest toward induction of cell death and be helpful for finding future cancer therapeutic targets for prostate cancer cells.

Protective Effects of Bacillus coagulans JA845 against D-Galactose/AlCl3-Induced Cognitive Decline, Oxidative Stress and Neuroinflammation

  • Song, Xinping;Zhao, Zijian;Zhao, Yujuan;Jin, Qing;Li, Shengyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권2호
    • /
    • pp.212-219
    • /
    • 2022
  • Recently, the efficacy of probiotics in treatment of neurodegenerative disorders has been reported in animal and clinical studies. Here, we assessed the effects of Bacillus coagulans JA845 in counteracting the symptoms of D-galactose (D-gal)/AlCl3-induced Alzheimer's disease (AD) in a mice model through behavioral test, histological assessment and biochemical analysis. Ten weeks of pre-treatment with B. coagulans JA845 prevented cognitive decline, attenuated hippocampal lesion and protected neuronal integrity, which demonstrated the neuroprotective features of B. coagulans JA845 in vivo. We also found that supplementation of B. coagulans JA845 alleviated amyloid-beta deposits and hyperphosphorylated tau in hippocampus of D-gal/AlCl3-induced AD model mice. Furthermore, B. coagulans JA845 administration attenuated oxidative stress and decreased serum concentration of inflammatory cytokines by regulating the Nrf2/HO-1 and MyD88/TRAF6/NF-κB pathway. Our results demonstrated for the first time that B. coagulans has the potential to help prevent cognitive decline and might be a novel therapeutic approach for the treatment of neurodegenerative diseases.

Dihydroxy-acid Dehydratase Involved in the Biosynthesis of the Branched-Chain Amino acids, Isoleucine and Valine, from the archaeon Sulfolobus solfataricus

  • Kim, Seong-Hun;Lee, Sun-Bok
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVI)
    • /
    • pp.327-333
    • /
    • 2005
  • Dihydroxy-acid dehydratase (DHAD, 2,3-dihydroxy-acid hydrolyase, EC 4.2.1.9) is one of the key enzymes involved in the biosynthetic pathway of the branched chain amino acid isoleucine and valine. Although the enzyme have been purified and characterized in various mesophiles including bacteria and eukarya, the biochemical properties of DHAD has bee not yet reported from hyperthermophilic archaea. In this study, we cloned, expressed, and purified a DHAD homologue from the thermoacidophilic archaeon Sulfolobus solfataricus P2, which grows optimally at $80\;^{\circ}C$ and pH 3, in E. coli. Characterization of the recombinant S. solfataricus DHAD (rSso_DHAD) revealed that it is the dimeric protein with a subunit molecular weight of 64,000 Da in native structure. rDHAD showed the highest activity toward 2,3-dihydroxyisovaleric acid among 17 aldonic acid substrates Interestingly, this enzyme also displayed 50 % activities toward some pentonic acids and hexonic acids when compared with the activity of this enzyme to the natural substrate. Moreover, rSso_DHAD indicated relatively higher activity toward D-gluconate than any other hexonic acids tested in substrates. $K_m$ and $V_{max}$ values of rSso_DHAD were calculated as $0.54\;{\pm}\;0.04\;mM$ toward 2,3dihydroxyisovalerate and $2.42\;{\pm}\;0.19\;mM$ toward D-gluconate, and as $21.6\;{\pm}\;0.4\;U/mg$ toward 2,3-dihydroxyisovalerate and $13.8\;{\pm}\;0.4\;U/mg$ toward D-gluconate, respectively. In the study for biochemical properties, the enzyme shows maximal activity between $70^{\circ}C$ and $80^{\circ}C$, and the pH range of pH 7.5 to 8.5. The half life time at $80^{\circ}C$ was 30 min. A divalent metal ion, $Mn^{2+}$, was only powerful activators, whereas other metal ions made the enzyme activity reduced. $Hg^{2+}$, organic mercury, and EDTA also strongly inhibited enzyme activities. Particularly, the rSso_DHAD activity was very stable under aerobic condition although the counterparts reported from mesophiles had been deactivated by oxygen.

  • PDF

Aqueous Extracts of Liriope platyphylla Are Tightly-Regulated by Insulin Secretion from Pancreatic Islets and by Increased Glucose Uptake through Glucose Transporters Expressed in Liver Hepatocytes

  • Kim, Ji-Eun;Nam, So-Hee;Choi, Sun-Il;Hwang, In-Sik;Lee, Hye-Ryun;Jang, Min-Ju;Lee, Chung-Yeol;Soon, Hong-Ju;Lee, Hee-Seob;Kim, Hae-Sung;Kang, Byeong-Cheol;Hong, Jin-Tae;Hwang, Dae-Youn
    • Biomolecules & Therapeutics
    • /
    • 제19권3호
    • /
    • pp.348-356
    • /
    • 2011
  • Liriope platyphylla is a medical herb that has long been used in Korea and China to treat cough, sputum, neurodigenerative disorders, obesity and diabetes. The aims of this study were to study the antidiabetic effects of the aqueous extract of L. platyphylla (AEtLP) through pancreatic and extrapancreatic actions. AEtLP were orally administrated to ICR mice once a day for 7 days. Of three different concentrations of AEtLP, only 10% AEtLP were low toxic to liver, based on body weight and serum biochemical analyses. However, 10% AEtLP-treated mice displayed signifi cant reduction of the glucose concentration and increased insulin concentration; no changes were noted using 5% and 15% AEtLP. Also, the increase of glucose transporter (Glut)-1 expression in liver was dependent on the concentration of AEtLP, and was regulated by the phosphorylation of Akt. The lowest expression of Glut-3 was observed in 15% AEtLP treated mice, followed by 10% AEtLP- and 5% AEtLP-treated mice. This pattern of Glut-3 expression was roughly in accord with the phosphorylation of c-Jun N-teminal kinase (JNK) in the mitogen-activated protein kinase (MAPK) pathway. Furthermore, a signifi cant rise of the superoxide dismutase activity (SOD) was detected in AEtLP-treated mice. The fi ndings suggest that AEtLP should be considered as a diabetes therapeutic candidate to induce insulin secretion from pancreatic ${\beta}$-cells and glucose uptake in liver cells.

Gene Expression Profiling of Acetaminophen Induced Hepatotoxicity in Mice

  • Suh, Soo-Kyung;Jung, Ki-Kyung;Jeong, Youn-Kyoung;Kim, Hyun-Ju;Lee, Woo-Sun;Koo, Ye-Mo;Kim, Tae-Gyun;Kang, Jin-Seok;Kim, Joo-Hwan;Lee, Eun-Mi;Park, Sue-Nie;Kim, Seung-Hee;Jung, Hai-Kwan
    • Molecular & Cellular Toxicology
    • /
    • 제2권4호
    • /
    • pp.236-243
    • /
    • 2006
  • Microarray analysis of gene expression has become a powerful approach for exploring the biological effects of drugs, particularly at the stage of toxicology and safety assessment. Acetaminophen (APAP) has been known to induce necrosis in liver, but the molecular mechanism involved has not been fully understood. In this study, we investigated gene expression changes of APAP using microarray technology. APAP was orally administered with a single dose of 50 mg/kg or 500 mg/kg into ICR mice and the animals were sacrificed at 6, 24 and 72 h of APAP administration. Serum biochemical markers for liver toxicity were measured to estimate the maximal toxic time and hepatic gene expression was assessed using high-density oligonucleotide microarrays capable of determining the expression profile of >30,000 well-substantiated mouse genes. Significant alterations in gene expression were noted in the liver of APAP-administered mice. The most notable changes in APAP-administered mice were the expression of genes involved in apoptosis, cell cycle, and calcium signaling pathway, cystein metabolism, glutatione metabolism, and MAPK pathway. The majority of the genes upregulated included insulin-like growth factor binding protein 1, heme oxygenase 1, metallothionein 1, S100 calcium binding protein, caspase 4, and P21. The upregulation of apoptosis and cell cycle-related genes were paralleled to response to APAP. Most of the affected gene expressions were returned to control levels after 72 hr. In conclusion, we identified potential hepatotoxicity makers, and these expressions profiling lead to a better understanding of the molecular basis of APAP-induced hapatotoxicity.

비 생물학적 스트레스 시 벼에서 OsABF3 유전자 분리와 ABA 신호전달 대한 연구 (Studies on OsABF3 Gene Isolation and ABA Signal Transduction in Rice Plants Against Abiotic Stress)

  • 안철현;박훤범
    • 한국자원식물학회지
    • /
    • 제30권5호
    • /
    • pp.571-577
    • /
    • 2017
  • ABA는 식물에서 비 생물학적 스트레스 내성에 관여하는 중요한 식물 호르몬이다. 애기장대의 group A bZIP 전사인자는 ABA 신호전달 과정에 중요한 역할을 한다고 알려져 있다. 그러나 벼에서는 group A bZIP 전사인자의 기능이 잘 알려져 있지 않다. 따라서 우리는 벼에서 group A bZIP 전사인자인 OsABF3(Oryza sativa ABA responsive element binding factor 3)를 연구하였다. 이를 위해 벼의 다양한 조직과 다양한 스트레스(가뭄, 염분, 저온, ABA, 산화 스트레스)에 따른OsABF3발현 패턴을 분석하였다. 또한 maize의 원형질체에서 GFP fusion 벡터를 사용한 세포 내 위치 분석을 통해 OsABF3가 핵단백질이라는 것을 확인하였다. Yeast one-hybrid 실험을 통해 OsABF3의 C-terminal 부분이 ABREs에 결합한다는 것과 N-terminal 부분이 하위 유전자의 transactivation 하는데 필요하다는 것을 알 수 있었다. 그리고 T-DNA가 삽입된 OsABF3의 homozygous 돌연변이체가 야생형과 과발현체에 비해 발아와 발아 후 단계에서 고농도의 ABA에 대한 민감도가 더 감소한 것을 알 수 있었다. 결과적으로 종합해 볼 때 OsABF3는 ABA의 의존적인 경로를 통해 비 생물학적 스트레스에 반응하는 유전자의 발현을 조절하는 기능을 하는 전사 조절자이다. 또한 OsABF3의 transactivation을 측정하는 실험에 있어서 억제 domain이 존재한다는 결과를 얻었다.

Phenol 분해균주의 분리 및 페놀함유 폐수의 생물학적 처리 (Isolation of a Phenol-degrading Bacterial Strain and Biological Treatment of Wastewater Containing Phenols)

  • 이현돈;이명은;김형갑;서현효
    • 생명과학회지
    • /
    • 제23권10호
    • /
    • pp.1273-1279
    • /
    • 2013
  • 방향족화합물들로 오염되어있는 토양 및 산업폐수를 포함한 각종 시료로부터 phenol에 분해활성이 높은 56균주를 순수분리 하였으며, 이들 분리 균주 중 균체생육과 phenol 분해활성이 가장 높은 균주인 GN13을 선별하였다. 분리균주 GN13은 형태학적, 생리학적 및 생화학적 특성을 조사한 결과 Neisseria 속 세균과 유사한 것으로 판명되어 최종적으로 Neisseria sp. GN13으로 명명하였다. 분리균주 Neisseria sp. GN13의 균체생육 및 phenol 분해를 위한 최적온도와 최적 pH는 각각 $32^{\circ}C$와 7.0였다. 유일 탄소원으로 phenol 1,000 mg/l를 포함하여 최적화된 배지를 사용한 jar-fermentor 배지에서 배양 30시간에 균체생육이 최대에 이르렀으며 배양 27시간째 거의 모든 phenol이 분해되었으며, catechol deoxygenase 활성측정에 의하여 Neisseria sp. GN13은 meta-와 ortho-pathway를 통하여 catechol 분해가 일어났다. Neisseria sp. GN13은 phenol 함유 인공폐수에서의 phenol 분해율은 배양 30시간 만에 97%의 phenol이 분해되는 것으로 나타났으며, 인공폐수에 대한 Neisseria sp. GN13과 활성슬러지 처리구에서의 TOC 제거효율은 각각 83%와 78%였다. 석유화학폐수에 대한 Neisseria sp. GN13의 COD 제거율은 활성슬러지만을 포함한 대조구보다 약 1.3배 높은 효율을 나타내었다. 이러한 결과로 미루어 분리균주 Neisseria sp. GN13은 phenol을 함유하고 있는 여러 폐수에 효과적으로 적용될 수 있을 것으로 생각된다.