• 제목/요약/키워드: biochemical

검색결과 6,711건 처리시간 0.076초

A Novel Strategy for Thermostability Improvement of Trypsin Based on N-Glycosylation within the Ω-Loop Region

  • Guo, Chao;Liu, Ye;Yu, Haoran;Du, Kun;Gan, Yiru;Huang, He
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권7호
    • /
    • pp.1163-1172
    • /
    • 2016
  • The Ω-loop is a nonregular and flexible structure that plays an important role in molecular recognition, protein folding, and thermostability. In the present study, molecular dynamics simulation was carried out to assess the molecular stability and flexibility profile of the porcine trypsin structures. Two Ω-Loops (fragment 57-67 and fragment 78-91) were confirmed to represent the flexible region. Subsequently, glycosylation site-directed mutations (A73S, N84S, and R104S) were introduced within the Ω-loop region and its wing chain based on its potential N-glycosylation sites (Asn-Xaa-Ser/Thr consensus sequences) and structure information to improve the thermostability of trypsin. The result demonstrated that the half-life of the N84S mutant at 50℃ increased by 177.89 min when compared with that of the wild-type enzyme. Furthermore, the significant increase in the thermal stability of the N84S mutant has also been proven by an increase in the Tm values determined by circular dichroism. Additionally, the optimum temperatures of the wild-type enzyme and the N84S mutant were 75℃ and 80℃, respectively. In conclusion, we obtained the thermostability-improved enzyme N84S mutant, and the strategy used to design this mutant based on its structural information and N-linked glycosylation modification could be applied to engineer other enzymes to meet the needs of the biotechnological industry.

수소 생산을 위한 SI Cycle 공정에서의 중간 열교환 공정 모사 연구 (A Simulation Study of Inter Heat Exchanger Process in SI Cycle Process for Hydrogen Production)

  • 신재선;조성진;최석훈;파라즈카심;이흥래;박제호;이원재;이의수;박상진
    • Korean Chemical Engineering Research
    • /
    • 제52권4호
    • /
    • pp.459-466
    • /
    • 2014
  • 열화학적인 수소 생산 공정 중 하나인 S-I Cycle은 요오드와 황을 이용한 수소 생산 공정으로써 물 분자로부터 수소 분자를 얻어내는 순환 공정이다. 수소 생산 공정에 열을 공급하고자 하는 초고온 원자로(VHTR; Very High Temperature Reactor)는 원자로에서 수소 생산 공정으로 방사능 없이 안전하게 열을 전달하기 위하여 중간열교환기(IHX; Intermediate Heat Exchanger)가 필요하다. 본 연구에서는 수소 생산공정과 초고온 원자로간의 중간 열교환 공정을 모사하여 운전압력 및 작동 유체의 변화에 따른 중간 열교환기의 효율을 계산하고 가장 경제적인 중간 열교환기를 설계하기 위한 공정 조건을 도출하였다.

Effect of azoxystrobin fungicide on the physiological and biochemical indices and ginsenoside contents of ginseng leaves

  • Liang, Shuang;Xu, Xuanwei;Lu, Zhongbin
    • Journal of Ginseng Research
    • /
    • 제42권2호
    • /
    • pp.175-182
    • /
    • 2018
  • Background: The impact of fungicide azoxystrobin, applied as foliar spray, on the physiological and biochemical indices and ginsenoside contents of ginseng was studied in ginseng (Panax ginseng Mey. cv. "Ermaya") under natural environmental conditions. Different concentrations of 25% azoxystrobin SC (150 g a.i./ha and 225 g a.i./ha) on ginseng plants were sprayed three times, and the changes in physiological and biochemical indices and ginsenoside contents of ginseng leaves were tested. Methods: Physiological and biochemical indices were measured using a spectrophotometer (Shimadzu UV-2450). Every index was determined three times per replication. Extracts of ginsenosides were analyzed by HPLC (Shimadzu LC20-AB) utilizing a GL-Wondasil $C_{18}$ column. Results: Chlorophyll and soluble protein contents were significantly (p = 0.05) increased compared with the control by the application of azoxystrobin. Additionally, activities of superoxide dismutase, catalase, ascorbate peroxidase, peroxidase, and ginsenoside contents in azoxystrobin-treated plants were improved, and malondialdehyde content and $O_2^-$ contents were reduced effectively. Azoxystrobin treatments to ginseng plants at all growth stages suggested that the azoxystrobin-induced delay of senescence was due to an enhanced antioxidant enzyme activity protecting the plants from harmful active oxygen species. When the dose of azoxystrobin was 225 g a.i./ha, the effect was more significant. Conclusion: This work suggested that azoxystrobin played a role in delaying senescence by changing physiological and biochemical indices and improving ginsenoside contents in ginseng leaves.

Possible Role of HER-2 in the Progression of Prostate Cancer from Primary Tumor to Androgen Independence

  • Murray, Nigel P;Reyes, Eduardo;Fuentealba, Cynthia;Jacob, Omar;Orellana, Nelson
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권15호
    • /
    • pp.6615-6619
    • /
    • 2015
  • Background: The expression of HER-2 in prostate cancer has been linked to disease progression. We analysed the presence of HER-2 expression in primary tumors in men undergoing radical prostatectomy, its association with clinical and pathological findings, and its expression in secondary circulating prostate cells (CPCs) during follow up, as well as links with biochemical failure and the effects of androgen blockade. Materials and Methods: Consecutive men undergoing radical prostatectomy for histologically confirmed prostate cancer were analyzed. HER-2 expression in the primary tumor was assessed using the HercepTest(R), CPCs were identified from blood samples using standard immunocytochemistry with anti-PSA and positive samples with the HercepTest(R) to determine HER-2 expression. The influence of HER-2 expression on the frequency of biochemical failure and effects of androgen blockade was determined. Results: 144 men with a mean age of $64.8{\pm}10.3$ years participated, with a median follow up of 8.2 years. HER-2 was expressed in 20.8% of primary tumors; it was associated with vascular infiltration and older age, but not with other clinical pathological findings. Some 40.3% of men had secondary CPCs detected, of which 38% expressed HER-2. Men CPC (+) had a higher frequency of biochemical failure, but there was no difference in HER-2 expression of CPCs with the frequency of biochemical failure. After androgen blockade, men with HER-2 (+) positive secondary CPCs had a higher frequency of disease progression to castrate resistant disease. Conclusions: HER-2 plays a dual role in the progression of prostate cancer; firstly it may increase the potential of tumor cells to disseminate from the primary tumor via the blood by increasing vascular infiltration. In the presence of androgens, there is no survival advantage of expressing HER-2, but once biochemical failure has occurred and androgen blockade started, HER-2 positive cells are resistant to treatment, survive and grow leading to castration resistant disease.

L-Ascorbic Acid의 비수계 나노 캡슐화 (Nano-capsulation of L-Ascorbic Acid in Nonaqueous System)

  • 홍주희;송기세;김경준;이채성;안병민;김병식
    • 공업화학
    • /
    • 제19권6호
    • /
    • pp.604-608
    • /
    • 2008
  • 본 연구에서는 L-아스코르빈산(L-ascorbic acid: Vitamin C)을 점성이 낮은 비수계 오일상에서의 나노 캡슐화(nano-capsulation)에 대한 기초 연구가 수행되었다. 비수계에서 제조된 나노 캡슐체들은 500 nm 이하 크기를 나타냈으며 유화물형태에서의 평균 입자 크기는 410 nm로 나타났다. 온도와 저장 기간에 대한 안정도는 4, 20, $30^{\circ}C$ 온도에서 30일간 저장했을 때 최초 5일 후에는 5.1, 9.3, 12.5%의 L-아스코르빈산이 캡슐체로부터 유리되어 나왔으나 이후 기간 동안에는 약 1~2% 정도가 유리되어 나왔다. 또한, 남녀 각각 10명의 대상인원에 대한 피부 자극도는 1명만이 2일 후에 아주 미세한 피부 자극이 나타났으며 다른 인원에게서는 무자극성을 나타내었다.

Effece of Chlorella Dietary Supplementation on Bone Biochemical Markers of Turnover in Postmenopausal Women

  • Kim, Yong-Ho;Hwang, Yoo-Kyeong;Hwang, Jung-Min;Seoung, Hee-Kyung;Kim, Dong-Uk
    • 대한의생명과학회지
    • /
    • 제9권1호
    • /
    • pp.9-13
    • /
    • 2003
  • Currently bone biochemical markers are considered to be the best indicators of present and the future state of bone turnover. A recent study has reported that chlorella increases the bone mineral density (BMD) on postmenopausal women, but presently there are no studies on bone biochemical markers treated with chlorella dietary supplementation. The purpose of the present study was to assess the bone biochemical markers for the short term and long term treatment groups, and non-treatment group as a control. Twenty two postmenopausal woman were treated for four months and eighteen for one year with 4 gm of chlorella dietary supplementation per day, and then assessed bone biochemical markers from serum and urine samples. Bone turnover rates calculated with Osteocalcin (OC), bone specific alkaline phosphatase (BAP) as a bone formation markers and deoxypyridinoline (DP), cross-linked N-telopeptides of type I collagen (NTx) as a bone resorption markers, showed 1131$\pm$87% for control group, 61$\pm$11% for short term treated group and 190$\pm$101% for long term treated group. We conclude that chlorella dietary supplementation enhances the bone formation, and NTx as a single markers, OC/Dp as a single markers of bone turnover rate were very useful tools for determine the effectiveness of chlorella dietary supplementation (or the postmenopausal women.

  • PDF

Effect of Crocus sativus L. stigma (saffron) against subacute effect of diazinon: histopathological, hematological, biochemical and genotoxicity evaluations in rats

  • Hariri, Alireza Timcheh;Moallem, Seyed Adel;Mahmoudi, Mahmoud;Memar, Bahram;Razavi, Bibi Marjan;Hosseinzadeh, Hossein
    • 대한약침학회지
    • /
    • 제21권2호
    • /
    • pp.61-69
    • /
    • 2018
  • Objective: In this study, the effects of saffron stigma against subacute diazinon (DZN) toxicity on enzymes levels, biochemical, hematological, histopathological and genotoxicity indices were studied in rats. Methods: Vitamin E (200 IU/kg) and the aqueous extract of saffron (50, 100 and 200 mg/kg) were injected intraperitoneally three times per week alone or with DZN (20 mg/kg/day, orally) for 4 weeks. The hematological and biochemical parameters were evaluated at the end of 4 weeks. Results: Reticulocytes counts, alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), creatine phosphokinase, CPK-MB, gama glutamyl transferase (GGT), uric acid and micronucleus indices were increased significantly but total protein and RBC cholinesterase activity were decreased in the DZN-treated group. Saffron prevented the effect of DZN on GGT (50 mg/kg), LDH, CPK and CPK-MB (100 and 200 mg/kg) levels. An increased uric acid and reduced protein levels by DZN were prevented by vitamin E and some doses of saffron. A significant reduction was observed in platelets, RBC, hemoglobin and hematocrit indices in the DZN group. Saffron and vitamin E prevented this reduction. Vitamin E and saffron did not reduce the effect of DZN on RBC cholinesterase activity. The extract and vitamin E could not prevent DZN genotoxicity in the micronucleus assay. Other biochemical parameters and pathological evaluation did not show any abnormality in tissues of all groups. Conclusion: This study shows that vitamin E and saffron reduce DZN induced hematological and biochemical toxicity. However, they do not prevent the genotoxicity induced by DZN.

Separation of Nattokinase from Bacillus subtilis Fermentation Broth by Expanded Bed Adsorption with Mixed-mode Adsorbent

  • Lu Miao-Hua;Lin Dong-Qiang;Wu Yuan-Chun;Yun Jun-Xian;Mei Le-He;Yao Shan-Jing
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권2호
    • /
    • pp.128-135
    • /
    • 2005
  • Mixed-mode hydrophobic/ionic matrices exhibit a salt-tolerant property for adsorbing target protein from high-ionic strength feedstock, which allows the application of undiluted feedstock via an expanded bed process. In the present work, a new type of mixed-mode adsorbent designed for expanded bed adsorption, Fastline $PRO^{\circledR}$, was challenged for the capture of nattokinase from the high ionic fermentation broth of Bacillus subtilis. Two important factors, pH and ion concentration, were investigated with regard to the performance of nattokinase ad-sorption. Under initial fermentation broth conditions (pH 6.6 and conductivity of 10 mS/cm) the adsorption capacity of nattokinase with Fastline PRO was high, with a maximum capacity of 5,350 U/mL adsorbent. The elution behaviors were investigated using packed bed adsorption experiments, which demonstrated that the effective desorption of nattokinase could be achieved by effecting a pH of 9.5. The biomass pulse response experiments were carried out in order to evaluate the biomass/adsorbent interactions between Bacillus subtilis cells and Fastline PRO, and to demonstrate a stable expanded bed in the feedstock containing Bacillus subtilis cells. Finally, an EBA process, utilizing mixed-mode Fastline PRO adsorbent, was optimized to capture nattokinase directly from the fermentation broth. The purification factor reached 12.3, thereby demonstrating the advantages of the mixed-mode EBA in enzyme separation.

Bioconversion of Untreated Corn Hull into L-Malic Acid by Trifunctional Xylanolytic Enzyme from Paenibacillus curdlanolyticus B-6 and Acetobacter tropicalis H-1

  • Duong, Thi Bich Huong;Ketbot, Prattana;Phitsuwan, Paripok;Waeonukul, Rattiya;Tachaapaikoon, Chakrit;Kosugi, Akihiko;Ratanakhanokchai, Khanok;Pason, Patthra
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권9호
    • /
    • pp.1262-1271
    • /
    • 2021
  • L-Malic acid (L-MA) is widely used in food and non-food products. However, few microorganisms have been able to efficiently produce L-MA from xylose derived from lignocellulosic biomass (LB). The objective of this work is to convert LB into L-MA with the concept of a bioeconomy and environmentally friendly process. The unique trifunctional xylanolytic enzyme, PcAxy43A from Paenibacillus curdlanolyticus B-6, effectively hydrolyzed xylan in untreated LB, especially corn hull to xylose, in one step. Furthermore, the newly isolated, Acetobacter tropicalis strain H1 was able to convert high concentrations of xylose derived from corn hull into L-MA as the main product, which can be easily purified. The strain H1 successfully produced a high L-MA titer of 77.09 g/l, with a yield of 0.77 g/g and a productivity of 0.64 g/l/h from the xylose derived from corn hull. The process presented in this research is an efficient, low-cost and environmentally friendly biological process for the green production of L-MA from LB.

Biosynthesis of Apigenin Glucosides in Engineered Corynebacterium glutamicum

  • Obed Jackson Amoah;Samir Bahadur Thapa;Su Yeong Ma;Hue Thi Nguyen;Morshed Md Zakaria;Jae Kyung Sohng
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권5호
    • /
    • pp.1154-1163
    • /
    • 2024
  • Glucosylation is a well-known approach to improve the solubility, pharmacological, and biological properties of flavonoids, making flavonoid glucosides a target for large-scale biosynthesis. However, the low yield of products coupled with the requirement of expensive UDP-sugars limits the application of enzymatic systems for large-scale. C. glutamicum is a Gram-positive and generally regarded as safe (GRAS) bacteria frequently employed for the large-scale production of amino acids and biofuels. Due to the versatility of its cell factory system and its non-endotoxin producing properties, it has become an attractive system for the industrial-scale biosynthesis of alternate products. Here, we explored the cell factory of C. glutamicum for efficient glucosylation of flavonoids using apigenin as a model flavonoid, with the heterologous expression of a promiscuous glycosyltransferase, YdhE from Bacillus licheniformis and the endogenous overexpression of C. glutamicum genes galU1 encoding UDP-glucose pyrophosphorylase and pgm encoding phosphoglucomutase involved in the synthesis of UDP-glucose to create a C. glutamicum cell factory system capable of efficiently glucosylation apigenin with a high yield of glucosides production. Consequently, the production of various apigenin glucosides was controlled under different temperatures yielding almost 4.2 mM of APG1(apigenin-4'-O-β-glucoside) at 25℃, and 0.6 mM of APG2 (apigenin-7-O-β-glucoside), 1.7 mM of APG3 (apigenin-4',7-O-β-diglucoside) and 2.1 mM of APG4 (apigenin- 4',5-O-β-diglucoside) after 40 h of incubation with the supplementation of 5 mM of apigenin and 37℃. The cost-effective developed system could be used to modify a wide range of plant secondary metabolites with increased pharmacokinetic activities on a large scale without the use of expensive UDP-sugars.