Acknowledgement
This research project is supported by King Mongkut's University of Technology Thonburi through the "KMUTT Research Center of Excellence Project (Grant no. 7601.24/4054)". The authors also acknowledge the financial support provided by Thailand Science Research and Innovation (TSRI) through the "Basic Research Fund. Duong Thi Bich Huong gratefully acknowledges the support provided by KMUTT through the "Petchra Pra Jom Klao Master Degree Research Scholarship".
References
- Baramee S, Phitsuwan P, Waeonukul R, Pason P, Tachaapaikoon C, Kosugi A, et al. 2015. Alkaline xylanolytic-cellulolytic multienzyme complex from the novel anaerobic alkalithermophilic bacterium Cellulosibacter alkalithermophilus and its hydrolysis of insoluble polysaccharides under neutral and alkaline conditions. Process Biochem. 50: 643-650. https://doi.org/10.1016/j.procbio.2015.01.019
- Pauly M, Keegstra K. 2008. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J. 54: 559-568. https://doi.org/10.1111/j.1365-313X.2008.03463.x
- Zhou L, Chen X, Tian X. 2018. The impact of fine particulate matter (PM2.5) on China's agricultural production from 2001 to 2010. J. Clean. Prod. 178: 133-141. https://doi.org/10.1016/j.jclepro.2017.12.204
- Barl B, Biliaderis CG, Murray ED, Macgregor AW. 1991. Combined chemical and enzymic treatments of corn husk lignocellulosics. J. Sci. Food Agric. 56: 195-214. https://doi.org/10.1002/jsfa.2740560209
- Jonsson LJ, Martin C. 2016. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199: 103-112. https://doi.org/10.1016/j.biortech.2015.10.009
- Kumar P, Barrett DM, Delwiche MJ, Stroeve P. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48: 3713-3729. https://doi.org/10.1021/ie801542g
- Teeravivattanakit T, Baramee S, Phitsuwan P, Sornyotha S, Waeonukul R, Pason P, et al. 2017. Chemical pretreatment-independent saccharifications of xylan and cellulose of rice straw by bacterial weak lignin-binding xylanolytic and cellulolytic enzymes. Appl. Environ. Microbiol. 83: e01522-17.
- Kovilein A, Kubisch C, Cai L, Ochsenreither K. 2019. Malic acid production from renewables: a review. J. Chem. Technol. Biotech. 95: 513-526.
- Chi Z, Wang ZP, Wang GY, Khan I, Chi ZM. 2016. Microbial biosynthesis and secretion of L-malic acid and its applications. Crit. Rev. Biotechnol. 36: 99-107. https://doi.org/10.3109/07388551.2014.924474
- Deng Y, Mao Y, Zhang X. 2016. Metabolic engineering of a laboratory-evolved Thermobifida fusca muC strain for malic acid production on cellulose and minimal treated lignocellulosic biomass. Biotechnol. Prog. 32: 14-20. https://doi.org/10.1002/btpr.2180
- Cheng C, Zhou Y, Lin M, Wei P, Yang S-T. 2017. Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: fermentation kinetics and economic analysis. Bioresour. Technol. 223: 166-174. https://doi.org/10.1016/j.biortech.2016.10.042
- Giorno L, Drioli E, Carvoli G, Cassano A, Donato L. 2001. Study of an enzyme membrane reactor with immobilized fumarase for production of L-malic acid. Biotechnol. Bioeng. 72: 77-84. https://doi.org/10.1002/1097-0290(20010105)72:1<77::AID-BIT11>3.0.CO;2-L
- Teeravivattanakit T, Baramee S, Phitsuwan P, Waeonukul R, Pason P, Tachaapaikoon C, et al. 2016. Novel trifunctional xylanolytic enzyme Axy43A from Paenibacillus curdlanolyticus strain B-6 exhibiting endo-xylanase, β-D-xylosidase, and arabinoxylan arabinofuranohydrolase activities. Appl. Environ. Microbiol. 82: 6942-6951. https://doi.org/10.1128/AEM.02256-16
- Duong HTBl, Ratanakhanokchai K, Tachaapaikoon C, Waeonukul R, Pason P. 2020. Identification of Acetorbactor tropicalis for malic acid production. pp. 123-127. Proceeding of the 14th South East Asian Technical University Consortium 2020 (SEATUC 2020) International Conference, 27th-28th February 2020, KX Building, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
- Nelson N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153: 375-380. https://doi.org/10.1016/S0021-9258(18)71980-7
- Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, et al. 2008. Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Procedure 1617: 1-16.
- Zou X, Yang J, Tian X, Guo M, Li Z, Li Y. 2016. Production of polymalic acid and malic acid from xylose and corncob hydrolysate by a novel Aureobasidium pullulans YJ 6-11 strain. Process Biochem. 51: 16-23. https://doi.org/10.1016/j.procbio.2015.11.018
- Van Dyk J, Pletschke B. 2012. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 30: 1458-1480. https://doi.org/10.1016/j.biotechadv.2012.03.002
- Wong KK, Saddler JN. 1992. Trichoderma xylanases, their properties and application. Crit. Rev. Biotechnol. 12: 413-435. https://doi.org/10.3109/07388559209114234
- Khuenkaeo N, Tippayawong N. 2020. Production and characterization of bio-oil and biochar from ablative pyrolysis of lignocellulosic biomass residues. Chem. Eng. Commun. 207: 153-160. https://doi.org/10.1080/00986445.2019.1574769
- Mardawati E, Werner A, Bley T, Mtap K, Setiadi T. 2014. The enzymatic hydrolysis of oil palm empty fruit bunches to xylose. J. Jpn. Inst. Energy 93: 973-978. https://doi.org/10.3775/jie.93.973
- Jommuengbout P, Pinitglang S, Kyu KL, Ratanakhanokchai K. 2009. Substrate-binding site of family 11 xylanase from Bacillus firmus K-1 by molecular docking. Biosci. Biotechnol. Biochem. 73: 833-839. https://doi.org/10.1271/bbb.80731
- Ye Y, Li X, Zhao J. 2017. Production and characteristics of a novel xylose-and alkali-tolerant GH 43 β-xylosidase from Penicillium oxalicum for promoting hemicellulose degradation. Sci. Rep. 7: 1-11. https://doi.org/10.1038/s41598-016-0028-x
- Kumar V, Binod P, Sindhu R, Gnansounou E, Ahluwalia V. 2018. Bioconversion of pentose sugars to value added chemicals and fuels: Recent trends, challenges and possibilities. Bioresour. Technol. 269: 443-451. https://doi.org/10.1016/j.biortech.2018.08.042
- Tachaapaikoon C, Kyu KL, and Ratanakhanokchai K. 2006. Purification of xylanase from alkaliphilic Bacillus sp. K-8 by using corn husk column. Process Biochem. 41: 2441-2445. https://doi.org/10.1016/j.procbio.2006.07.004
- Baramee S, Siriatcharanon A-k, Ketbot P, Teeravivattanakit T, Waeonukul R, Pason P, et al. 2020. Biological pretreatment of rice straw with cellulase-free xylanolytic enzyme-producing Bacillus firmus K-1: Structural modification and biomass digestibility. Renew. Energy 160: 555-563. https://doi.org/10.1016/j.renene.2020.06.061
- Spiridon I, Poni P, Ghica G. 2018. Biological and pharmaceutical applications of lignin and its derivatives: a mini-review. Cellulose Chem. Technol. 52: 543-550.
- Yan Z, Zheng XW, Chen JY, Han JS, Han BZ. 2013. Effect of different Bacillus strains on the profile of organic acids in a liquid culture of Daqu. J. Inst. Brew. 119: 78-83. https://doi.org/10.1002/jib.58
- Gil NY, Gwon HM, Yeo SH, Kim SY. 2020. Metabolite profile and immunomodulatory properties of bellflower root vinegar produced using Acetobacter pasteurianus A11-2. Foods 9: 1-14.
- Dorsam S, Fesseler J, Gorte O, Hahn T, Zibek S, Syldatk C, et al. 2017. Sustainable carbon sources for microbial organic acid production with filamentous fungi. Biotechnol. Biofuels 10: 242. https://doi.org/10.1186/s13068-017-0930-x
- Avanthi A, Kumar S, Sherpa KC, Banerjee R. 2017. Bioconversion of hemicelluloses of lignocellulosic biomass to ethanol: an attempt to utilize pentose sugars. Biofuels 8: 431-444. https://doi.org/10.1080/17597269.2016.1249738
- Dai Z, Zhou H, Zhang S, Gu H, Yang Q, Zhang W, et al. 2018. Current advance in biological production of malic acid using wild type and metabolic engineered strains. Bioresour. Technol. 258: 345-353. https://doi.org/10.1016/j.biortech.2018.03.001
- Zou X, Cheng C, Feng J, Song X, Lin M, Yang S-T. 2019. Biosynthesis of polymalic acid in fermentation: advances and prospects for industrial application. Crit. Rev. Biotechnol. 39: 408-421. https://doi.org/10.1080/07388551.2019.1571008
- Yegin S, Saha BC, Kennedy GJ, Leathers TD. 2019. Valorization of egg shell as a detoxifying and buffering agent for efficient polymalic acid production by Aureobasidium pullulans NRRL Y-2311-1 from barley straw hydrolysate. Bioresour. Technol. 278: 130-137. https://doi.org/10.1016/j.biortech.2018.12.119
- Komesu A, Oliveira J, Neto JM, Penteado ED, Diniz AAR, da Silva Martins LH. 2020. Xylose fermentation to bioethanol production using genetic engineering microorganisms. pp. 143-154. In Arindam K, Vinay S (eds.), Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass, 1st Ed. Elsevier, Amsterdam.
- Zeng W, Zhang B, Liu Q, Chen G, Liang Z. 2019. Analysis of the L-malate biosynthesis pathway involved in poly (β-L-malic acid) production in Aureobasidium melanogenum GXZ-6 by addition of metabolic intermediates and inhibitors. J. Microbiol. 57: 281-287. https://doi.org/10.1007/s12275-019-8424-0
- Li X, Liu Y, Yang Y, Zhang H, Wang H, Wu Y, et al. 2014. High levels of malic acid production by the bioconversion of corn straw hydrolyte using an isolated Rhizopus delemar strain. Biotechnol. Bioprocess Eng. 19: 478-492. https://doi.org/10.1007/s12257-014-0047-z
- Prabhu AA, Ledesma-Amaro R, Lin CSK, Coulon F, Thakur VK, Kumar V. 2020. Bioproduction of succinic acid from xylose by engineered Yarrowia lipolytica without pH control. Biotechnol. Biofuels 13: 113. https://doi.org/10.1186/s13068-020-01747-3
- Geyer M, Onyancha FM, Nicol W, Brink HG. 2018. Malic acid production by Aspergillus oryzae: the role of CaCO3. Chem. Eng. 70: 1801-1806.
- Sasaki Y, Takao S. 1967. Organic acid production by Basidiomycetes. : II. Acid production from xylose. J. Facul. Agr. Hokkaido Univ. 55: 174-181.
- Zhang X, Wang X, Shanmugam K, Ingram L. 2011. L-malate production by metabolically engineered Escherichia coli. App. Environ. Microbiol. 77: 427-434. https://doi.org/10.1128/AEM.01971-10
- Zeng W, Zhang B, Li M, Ding S, Chen G, Liang Z. 2019. Development and benefit evaluation of fermentation strategies for poly (malic acid) production from malt syrup by Aureobasidium melanogenum GXZ-6. Bioresour. Technol. 274: 479-487. https://doi.org/10.1016/j.biortech.2018.12.027
- Zou X, Wang Y, Tu G, Zan Z, Wu X. 2015. Adaptation and transcriptome analysis of Aureobasidium pullulans in corncob hydrolysate for increased inhibitor tolerance to malic acid production. PLoS One 10: e0121416. https://doi.org/10.1371/journal.pone.0121416
- Leathers TD, Manitchotpisit P. 2013. Production of poly (β-L-malic acid)(PMA) from agricultural biomass substrates by Aureobasidium pullulans. Biotechnol. Lett. 35: 83-89. https://doi.org/10.1007/s10529-012-1045-x