DOI QR코드

DOI QR Code

Bioconversion of Untreated Corn Hull into L-Malic Acid by Trifunctional Xylanolytic Enzyme from Paenibacillus curdlanolyticus B-6 and Acetobacter tropicalis H-1

  • Duong, Thi Bich Huong (Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Ketbot, Prattana (Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi) ;
  • Phitsuwan, Paripok (Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Waeonukul, Rattiya (Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Tachaapaikoon, Chakrit (Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Kosugi, Akihiko (Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences) ;
  • Ratanakhanokchai, Khanok (Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Pason, Patthra (Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
  • Received : 2021.05.11
  • Accepted : 2021.07.13
  • Published : 2021.09.28

Abstract

L-Malic acid (L-MA) is widely used in food and non-food products. However, few microorganisms have been able to efficiently produce L-MA from xylose derived from lignocellulosic biomass (LB). The objective of this work is to convert LB into L-MA with the concept of a bioeconomy and environmentally friendly process. The unique trifunctional xylanolytic enzyme, PcAxy43A from Paenibacillus curdlanolyticus B-6, effectively hydrolyzed xylan in untreated LB, especially corn hull to xylose, in one step. Furthermore, the newly isolated, Acetobacter tropicalis strain H1 was able to convert high concentrations of xylose derived from corn hull into L-MA as the main product, which can be easily purified. The strain H1 successfully produced a high L-MA titer of 77.09 g/l, with a yield of 0.77 g/g and a productivity of 0.64 g/l/h from the xylose derived from corn hull. The process presented in this research is an efficient, low-cost and environmentally friendly biological process for the green production of L-MA from LB.

Keywords

Acknowledgement

This research project is supported by King Mongkut's University of Technology Thonburi through the "KMUTT Research Center of Excellence Project (Grant no. 7601.24/4054)". The authors also acknowledge the financial support provided by Thailand Science Research and Innovation (TSRI) through the "Basic Research Fund. Duong Thi Bich Huong gratefully acknowledges the support provided by KMUTT through the "Petchra Pra Jom Klao Master Degree Research Scholarship".

References

  1. Baramee S, Phitsuwan P, Waeonukul R, Pason P, Tachaapaikoon C, Kosugi A, et al. 2015. Alkaline xylanolytic-cellulolytic multienzyme complex from the novel anaerobic alkalithermophilic bacterium Cellulosibacter alkalithermophilus and its hydrolysis of insoluble polysaccharides under neutral and alkaline conditions. Process Biochem. 50: 643-650. https://doi.org/10.1016/j.procbio.2015.01.019
  2. Pauly M, Keegstra K. 2008. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J. 54: 559-568. https://doi.org/10.1111/j.1365-313X.2008.03463.x
  3. Zhou L, Chen X, Tian X. 2018. The impact of fine particulate matter (PM2.5) on China's agricultural production from 2001 to 2010. J. Clean. Prod. 178: 133-141. https://doi.org/10.1016/j.jclepro.2017.12.204
  4. Barl B, Biliaderis CG, Murray ED, Macgregor AW. 1991. Combined chemical and enzymic treatments of corn husk lignocellulosics. J. Sci. Food Agric. 56: 195-214. https://doi.org/10.1002/jsfa.2740560209
  5. Jonsson LJ, Martin C. 2016. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199: 103-112. https://doi.org/10.1016/j.biortech.2015.10.009
  6. Kumar P, Barrett DM, Delwiche MJ, Stroeve P. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48: 3713-3729. https://doi.org/10.1021/ie801542g
  7. Teeravivattanakit T, Baramee S, Phitsuwan P, Sornyotha S, Waeonukul R, Pason P, et al. 2017. Chemical pretreatment-independent saccharifications of xylan and cellulose of rice straw by bacterial weak lignin-binding xylanolytic and cellulolytic enzymes. Appl. Environ. Microbiol. 83: e01522-17.
  8. Kovilein A, Kubisch C, Cai L, Ochsenreither K. 2019. Malic acid production from renewables: a review. J. Chem. Technol. Biotech. 95: 513-526.
  9. Chi Z, Wang ZP, Wang GY, Khan I, Chi ZM. 2016. Microbial biosynthesis and secretion of L-malic acid and its applications. Crit. Rev. Biotechnol. 36: 99-107. https://doi.org/10.3109/07388551.2014.924474
  10. Deng Y, Mao Y, Zhang X. 2016. Metabolic engineering of a laboratory-evolved Thermobifida fusca muC strain for malic acid production on cellulose and minimal treated lignocellulosic biomass. Biotechnol. Prog. 32: 14-20. https://doi.org/10.1002/btpr.2180
  11. Cheng C, Zhou Y, Lin M, Wei P, Yang S-T. 2017. Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: fermentation kinetics and economic analysis. Bioresour. Technol. 223: 166-174. https://doi.org/10.1016/j.biortech.2016.10.042
  12. Giorno L, Drioli E, Carvoli G, Cassano A, Donato L. 2001. Study of an enzyme membrane reactor with immobilized fumarase for production of L-malic acid. Biotechnol. Bioeng. 72: 77-84. https://doi.org/10.1002/1097-0290(20010105)72:1<77::AID-BIT11>3.0.CO;2-L
  13. Teeravivattanakit T, Baramee S, Phitsuwan P, Waeonukul R, Pason P, Tachaapaikoon C, et al. 2016. Novel trifunctional xylanolytic enzyme Axy43A from Paenibacillus curdlanolyticus strain B-6 exhibiting endo-xylanase, β-D-xylosidase, and arabinoxylan arabinofuranohydrolase activities. Appl. Environ. Microbiol. 82: 6942-6951. https://doi.org/10.1128/AEM.02256-16
  14. Duong HTBl, Ratanakhanokchai K, Tachaapaikoon C, Waeonukul R, Pason P. 2020. Identification of Acetorbactor tropicalis for malic acid production. pp. 123-127. Proceeding of the 14th South East Asian Technical University Consortium 2020 (SEATUC 2020) International Conference, 27th-28th February 2020, KX Building, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
  15. Nelson N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153: 375-380. https://doi.org/10.1016/S0021-9258(18)71980-7
  16. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, et al. 2008. Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Procedure 1617: 1-16.
  17. Zou X, Yang J, Tian X, Guo M, Li Z, Li Y. 2016. Production of polymalic acid and malic acid from xylose and corncob hydrolysate by a novel Aureobasidium pullulans YJ 6-11 strain. Process Biochem. 51: 16-23. https://doi.org/10.1016/j.procbio.2015.11.018
  18. Van Dyk J, Pletschke B. 2012. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 30: 1458-1480. https://doi.org/10.1016/j.biotechadv.2012.03.002
  19. Wong KK, Saddler JN. 1992. Trichoderma xylanases, their properties and application. Crit. Rev. Biotechnol. 12: 413-435. https://doi.org/10.3109/07388559209114234
  20. Khuenkaeo N, Tippayawong N. 2020. Production and characterization of bio-oil and biochar from ablative pyrolysis of lignocellulosic biomass residues. Chem. Eng. Commun. 207: 153-160. https://doi.org/10.1080/00986445.2019.1574769
  21. Mardawati E, Werner A, Bley T, Mtap K, Setiadi T. 2014. The enzymatic hydrolysis of oil palm empty fruit bunches to xylose. J. Jpn. Inst. Energy 93: 973-978. https://doi.org/10.3775/jie.93.973
  22. Jommuengbout P, Pinitglang S, Kyu KL, Ratanakhanokchai K. 2009. Substrate-binding site of family 11 xylanase from Bacillus firmus K-1 by molecular docking. Biosci. Biotechnol. Biochem. 73: 833-839. https://doi.org/10.1271/bbb.80731
  23. Ye Y, Li X, Zhao J. 2017. Production and characteristics of a novel xylose-and alkali-tolerant GH 43 β-xylosidase from Penicillium oxalicum for promoting hemicellulose degradation. Sci. Rep. 7: 1-11. https://doi.org/10.1038/s41598-016-0028-x
  24. Kumar V, Binod P, Sindhu R, Gnansounou E, Ahluwalia V. 2018. Bioconversion of pentose sugars to value added chemicals and fuels: Recent trends, challenges and possibilities. Bioresour. Technol. 269: 443-451. https://doi.org/10.1016/j.biortech.2018.08.042
  25. Tachaapaikoon C, Kyu KL, and Ratanakhanokchai K. 2006. Purification of xylanase from alkaliphilic Bacillus sp. K-8 by using corn husk column. Process Biochem. 41: 2441-2445. https://doi.org/10.1016/j.procbio.2006.07.004
  26. Baramee S, Siriatcharanon A-k, Ketbot P, Teeravivattanakit T, Waeonukul R, Pason P, et al. 2020. Biological pretreatment of rice straw with cellulase-free xylanolytic enzyme-producing Bacillus firmus K-1: Structural modification and biomass digestibility. Renew. Energy 160: 555-563. https://doi.org/10.1016/j.renene.2020.06.061
  27. Spiridon I, Poni P, Ghica G. 2018. Biological and pharmaceutical applications of lignin and its derivatives: a mini-review. Cellulose Chem. Technol. 52: 543-550.
  28. Yan Z, Zheng XW, Chen JY, Han JS, Han BZ. 2013. Effect of different Bacillus strains on the profile of organic acids in a liquid culture of Daqu. J. Inst. Brew. 119: 78-83. https://doi.org/10.1002/jib.58
  29. Gil NY, Gwon HM, Yeo SH, Kim SY. 2020. Metabolite profile and immunomodulatory properties of bellflower root vinegar produced using Acetobacter pasteurianus A11-2. Foods 9: 1-14.
  30. Dorsam S, Fesseler J, Gorte O, Hahn T, Zibek S, Syldatk C, et al. 2017. Sustainable carbon sources for microbial organic acid production with filamentous fungi. Biotechnol. Biofuels 10: 242. https://doi.org/10.1186/s13068-017-0930-x
  31. Avanthi A, Kumar S, Sherpa KC, Banerjee R. 2017. Bioconversion of hemicelluloses of lignocellulosic biomass to ethanol: an attempt to utilize pentose sugars. Biofuels 8: 431-444. https://doi.org/10.1080/17597269.2016.1249738
  32. Dai Z, Zhou H, Zhang S, Gu H, Yang Q, Zhang W, et al. 2018. Current advance in biological production of malic acid using wild type and metabolic engineered strains. Bioresour. Technol. 258: 345-353. https://doi.org/10.1016/j.biortech.2018.03.001
  33. Zou X, Cheng C, Feng J, Song X, Lin M, Yang S-T. 2019. Biosynthesis of polymalic acid in fermentation: advances and prospects for industrial application. Crit. Rev. Biotechnol. 39: 408-421. https://doi.org/10.1080/07388551.2019.1571008
  34. Yegin S, Saha BC, Kennedy GJ, Leathers TD. 2019. Valorization of egg shell as a detoxifying and buffering agent for efficient polymalic acid production by Aureobasidium pullulans NRRL Y-2311-1 from barley straw hydrolysate. Bioresour. Technol. 278: 130-137. https://doi.org/10.1016/j.biortech.2018.12.119
  35. Komesu A, Oliveira J, Neto JM, Penteado ED, Diniz AAR, da Silva Martins LH. 2020. Xylose fermentation to bioethanol production using genetic engineering microorganisms. pp. 143-154. In Arindam K, Vinay S (eds.), Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass, 1st Ed. Elsevier, Amsterdam.
  36. Zeng W, Zhang B, Liu Q, Chen G, Liang Z. 2019. Analysis of the L-malate biosynthesis pathway involved in poly (β-L-malic acid) production in Aureobasidium melanogenum GXZ-6 by addition of metabolic intermediates and inhibitors. J. Microbiol. 57: 281-287. https://doi.org/10.1007/s12275-019-8424-0
  37. Li X, Liu Y, Yang Y, Zhang H, Wang H, Wu Y, et al. 2014. High levels of malic acid production by the bioconversion of corn straw hydrolyte using an isolated Rhizopus delemar strain. Biotechnol. Bioprocess Eng. 19: 478-492. https://doi.org/10.1007/s12257-014-0047-z
  38. Prabhu AA, Ledesma-Amaro R, Lin CSK, Coulon F, Thakur VK, Kumar V. 2020. Bioproduction of succinic acid from xylose by engineered Yarrowia lipolytica without pH control. Biotechnol. Biofuels 13: 113. https://doi.org/10.1186/s13068-020-01747-3
  39. Geyer M, Onyancha FM, Nicol W, Brink HG. 2018. Malic acid production by Aspergillus oryzae: the role of CaCO3. Chem. Eng. 70: 1801-1806.
  40. Sasaki Y, Takao S. 1967. Organic acid production by Basidiomycetes. : II. Acid production from xylose. J. Facul. Agr. Hokkaido Univ. 55: 174-181.
  41. Zhang X, Wang X, Shanmugam K, Ingram L. 2011. L-malate production by metabolically engineered Escherichia coli. App. Environ. Microbiol. 77: 427-434. https://doi.org/10.1128/AEM.01971-10
  42. Zeng W, Zhang B, Li M, Ding S, Chen G, Liang Z. 2019. Development and benefit evaluation of fermentation strategies for poly (malic acid) production from malt syrup by Aureobasidium melanogenum GXZ-6. Bioresour. Technol. 274: 479-487. https://doi.org/10.1016/j.biortech.2018.12.027
  43. Zou X, Wang Y, Tu G, Zan Z, Wu X. 2015. Adaptation and transcriptome analysis of Aureobasidium pullulans in corncob hydrolysate for increased inhibitor tolerance to malic acid production. PLoS One 10: e0121416. https://doi.org/10.1371/journal.pone.0121416
  44. Leathers TD, Manitchotpisit P. 2013. Production of poly (β-L-malic acid)(PMA) from agricultural biomass substrates by Aureobasidium pullulans. Biotechnol. Lett. 35: 83-89. https://doi.org/10.1007/s10529-012-1045-x