DOI QR코드

DOI QR Code

A Simulation Study of Inter Heat Exchanger Process in SI Cycle Process for Hydrogen Production

수소 생산을 위한 SI Cycle 공정에서의 중간 열교환 공정 모사 연구

  • Shin, Jae Sun (Department of Chemical & Biochemical Engineering, Dongguk University) ;
  • Cho, Sung Jin (Department of Chemical & Biochemical Engineering, Dongguk University) ;
  • Choi, Suk Hoon (Department of Chemical & Biochemical Engineering, Dongguk University) ;
  • Qasim, Faraz (Department of Chemical & Biochemical Engineering, Dongguk University) ;
  • Lee, Heung N. (Nuclear Team, KONES Co.) ;
  • Park, Jae Ho (Nuclear Team, KONES Co.) ;
  • Lee, Won Jae (Korea Atomic Energy Research Institute) ;
  • Lee, Euy Soo (Department of Chemical & Biochemical Engineering, Dongguk University) ;
  • Park, Sang Jin (Department of Chemical & Biochemical Engineering, Dongguk University)
  • Received : 2013.12.27
  • Accepted : 2014.01.23
  • Published : 2014.08.01

Abstract

SI Cyclic process is one of the thermochemical hydrogen production processes using iodine and sulfur for producing hydrogen molecules from water. VHTR (Very High Temperature Reactor) can be used to supply heat to hydrogen production process, which is a high temperature nuclear reactor. IHX (Intermediate Heat Exchanger) is necessary to transfer heat to hydrogen production process safely without radioactivity. In this study, the strategy for the optimum design of IHX between SI hydrogen process and VHTR is proposed for various operating pressures of the reactor, and the different cooling fluids. Most economical efficiency of IHX is also proposed along with process conditions.

열화학적인 수소 생산 공정 중 하나인 S-I Cycle은 요오드와 황을 이용한 수소 생산 공정으로써 물 분자로부터 수소 분자를 얻어내는 순환 공정이다. 수소 생산 공정에 열을 공급하고자 하는 초고온 원자로(VHTR; Very High Temperature Reactor)는 원자로에서 수소 생산 공정으로 방사능 없이 안전하게 열을 전달하기 위하여 중간열교환기(IHX; Intermediate Heat Exchanger)가 필요하다. 본 연구에서는 수소 생산공정과 초고온 원자로간의 중간 열교환 공정을 모사하여 운전압력 및 작동 유체의 변화에 따른 중간 열교환기의 효율을 계산하고 가장 경제적인 중간 열교환기를 설계하기 위한 공정 조건을 도출하였다.

Keywords

Acknowledgement

Supported by : 환경부

References

  1. Seo, J. G., Youn, M. H., Jung, J. C. and Song, I. K., "Hydrogen Production by Steam Reforming of Liquefield Natural Gas (LNG) Over Mesoporous Nickel-alumina Aerogel Catalyst," Int. J. Hydrog. Energy, 35(13), 6738-6746(2010). https://doi.org/10.1016/j.ijhydene.2010.04.093
  2. Lemort, F., Lafon, C., Dedryvere, R. and Gonbeau, D., "Physicochemical and Themodynamic Investigation of the UT-3 Hydrogen Production Cycle : A New Technological Assessment," Int. J. Hydrog. Energy, 31(7), 906-918(2006). https://doi.org/10.1016/j.ijhydene.2005.07.011
  3. Huang, C. and T-Raissi, A., "Analysis of Sulfur-iodine Themochemical Cycle for Solar Hydrogen Production. Part 1: Decomposition of Sulfuric Acid," Solar Energy, 78(5), 632-646(2005). https://doi.org/10.1016/j.solener.2004.01.007
  4. Brown, L. C., Funk, J. F. and Showalter, S. K., "Initial Screening of Thermochemical Water-Splitting Cycle for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power," Report GA-A23373, 2000.
  5. Brown, L. C. and Besenbruch, G. E., "High Efficiency Generation of hydrogen Fuels Using Nuclear Power," Report GA-A24285 (2002).
  6. Kim, S. Y., Go, Y. K., Park, C. S., Bae, K. K. and Kim, Y. H., "Charateristic of Hydrogen Iodide Decomposotion using Ni-Pt Bimetallic Catalyst in Sulfur-Iodine Process," Trans. of the Korean Hydrogen and New Energy Society, 23(1), 1-7(2012). https://doi.org/10.7316/khnes.2012.23.1.001
  7. Jeong, H. D., Kim, I. H., Kim, T. H., Choo, K. Y. and Bae, G. G., "Effect of Iodine Input in the Liquid-Liquid Separation Properties on Bunsen Reaction Process," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 46(3), 633-638(2008).
  8. Murphy, J. E. and O'Connell, J. P., "A Properties Model of the $HI-I_2-H_2O-H_2$ System in the Sulfur-iodine Cycle for Hydrogen Manufacture," Fluid Phase Equilib., 288(1), 99-110(2010). https://doi.org/10.1016/j.fluid.2009.10.025
  9. Takai, T. and Nakajiro, T., "A Hydrogen Production Experiment by the Thermo-chemical and Electrolytic Hybrid Hydrogen Production in Low Temperature Range-System Viability and Preliminary Thermal Efficiency Estimation," Japan Atomic Energy Agency, (2008).
  10. Brown, N. R., Seker, V., Revankar, S. T. and Downar, T. J., "Transient Simulation of An Endothermic Chemical Process Facility Coupled to a High Temperature Reactor : Model Development and Validation," Nucl. Eng. Des., 248(1), 1-13(2012). https://doi.org/10.1016/j.nucengdes.2012.03.049
  11. Duigou, A. L., Borgard, J. M., Larousse, B., Doizi, D., Allen, R., Ewan, B. C., Priestman, G. H., Elder, R., Devonshire, R., Ramos, V., Cerri, G., Salvini, C., Giovannelli, A., Maria, G. D., Corgnale, C., Brutti, S., Roeb, M., Noglik, A., Rietbrock, P. M., Mohr, S., Oliveira, L., Monnerie, N., Schmitz, M., Sattler, C., Martinez, A. O., Manzano, D. L., Rojas, J. C., Dechelotte, S. and Baudouin, O., "HYTHEC: An EC Funded Search for a Long Term Massive Hydrogen Production Route Using Solar and Nuclear Technologies," Int. J. Hydrogen Energy, 32(11), 1516-1529(2006).
  12. Chang, J. W., Kim, J. H., Shin, Y. J., Youn, C. O., Lee, T. H., Lee, K. Y., Kim, Y. W. and Chang, J. H., "Computer Program for Equipment Sizing on the Secondary Helium Loop of a VHTRSI Hydrogen Production System," Transactions of the Korean Nuclear Society Autumn Meeting, 89-90(2010).
  13. Jung, C. H. and Park, J. Y., "Fabricability of Reaction-sintered SiC for Ceramic Heat Exchanger Operated in a Severe Environment," Journal of the Korean Ceramic Society, 48(1), 52-56(2011). https://doi.org/10.4191/KCERS.2011.48.1.052
  14. Zwaan, S. J., Boer, B., Lathouwers, D. and Kloosterman, J. L., " Static Design of a Liquid-Salt-Cooled Pebble Bed Reactor (LSPBR)," Ann. Nucl. Energy, 34(2), 83-92(2007). https://doi.org/10.1016/j.anucene.2006.11.008
  15. Moon, G. Y., Lee, S. S., Yang, G. R. and Song, K. H., "Effects of Organic Acid Catalysts on the Hydrogen Generation from $NaBH_4$," Korean J. Chem. Eng., 27(2), 474-479(2010). https://doi.org/10.1007/s11814-010-0072-3
  16. Kuchonthara, P., Puttasawat, B., Piumsomboon, P., Mekasut, L. and Vitidsant, T., "Catalytic Steam Reforming of Biomass-derived Tar for Hydrogen Production whit $K_2CO_3/NiO/\gamma-Al_2O_3$ Catalyst," Korean J. Chem. Eng., 29(11), 1525-1530(2012). https://doi.org/10.1007/s11814-012-0027-y

Cited by

  1. 분무열분해로 합성한 수전해용 Co3O4의 입자형태에 따른 산소발생 활성에 관한 연구 vol.54, pp.6, 2014, https://doi.org/10.9713/kcer.2016.54.6.854
  2. 수분이 NaKZn-Chloride의 녹는점과 고온안정성에 미치는 영향 vol.56, pp.4, 2018, https://doi.org/10.9713/kcer.2018.56.4.555
  3. 수소 생산을 위한 Sulfur-Iodine Cycle 분젠반응의 Pilot-Scale 공정 모델 개발 및 공정 최적화 vol.58, pp.2, 2014, https://doi.org/10.9713/kcer.2020.58.2.235