DOI QR코드

DOI QR Code

Optimization of Single-stage Mixed Refrigerant LNG Process Considering Inherent Explosion Risks

잠재적 폭발 위험성을 고려한 단단 혼합냉매 LNG 공정의 설계 변수 최적화

  • Kim, Ik Hyun (School of chemical and biological engineering, Seoul National University) ;
  • Dan, Seungkyu (School of chemical and biological engineering, Seoul National University) ;
  • Cho, Seonghyun (School of chemical and biological engineering, Seoul National University) ;
  • Lee, Gibaek (Department of Chemical and Biological Engineering, Korea National University of Transportation) ;
  • Yoon, En Sup (School of chemical and biological engineering, Seoul National University)
  • 김익현 (서울대학교 화학생물공학부) ;
  • 단승규 (서울대학교 화학생물공학부) ;
  • 조성현 (서울대학교 화학생물공학부) ;
  • 이기백 (한국교통대학교 화공생물공학과) ;
  • 윤인섭 (서울대학교 화학생물공학부)
  • Received : 2014.01.08
  • Accepted : 2014.03.18
  • Published : 2014.08.01

Abstract

Preliminary design in chemical process furnishes economic feasibility through calculation of both mass balance and energy balance and makes it possible to produce a desired product under the given conditions. Through this design stage, the process possesses unchangeable characteristics, since the materials, reactions, unit configuration, and operating conditions were determined. Unique characteristics could be very economic, but it also implies various potential risk factors as well. Therefore, it becomes extremely important to design process considering both economics and safety by integrating process simulation and quantitative risk analysis during preliminary design stage. The target of this study is LNG liquefaction process. By the simulation using Aspen HYSYS and quantitative risk analysis, the design variables of the process were determined in the way to minimize the inherent explosion risks and operating cost. Instead of the optimization tool of Aspen HYSYS, the optimization was performed by using stochastic optimization algorithm (Covariance Matrix Adaptation-Evolution Strategy, CMA-ES) which was implemented through automation between Aspen HYSYS and Matlab. The research obtained that the important variable to enhance inherent safety was the operation pressure of mixed refrigerant. The inherent risk was able to be reduced about 4~18% by increasing the operating cost about 0.5~10%. As the operating cost increases, the absolute value of risk was decreased as expected, but cost-effectiveness of risk reduction had decreased. Integration of process simulation and quantitative risk analysis made it possible to design inherently safe process, and it is expected to be useful in designing the less risky process since risk factors in the process can be numerically monitored during preliminary process design stage.

화학공정의 기초설계는 물질수지와 열수지 계산을 기초로 공정의 경제성을 확보하고 주어진 조건 내에서 원하는 제품을 생산 가능하도록 한다. 이 단계를 통해 공정은 사용될 물질과 반응, 설비의 구조와 운전 조건 등이 결정되기 때문에 이후 바뀔 수 없는 고유한 특성을 갖게 된다. 고유한 특성은 뛰어난 경제성일 수도 있지만 다양한 잠재적 위험요인을 내포하는 것일 수도 있다. 따라서 기초설계를 위한 공정모사와 정량적 위험성 평가 기법의 통합을 통해 보다 안전하면서도 경제적인 공정을 설계하는 것이 중요하다. 본 논문에서는 LNG 액화공정을 Aspen HYSYS를 이용하여 모사하고, 폭발 사고에 대한 정량적 위험성 평가를 수행함으로써 잠재적 위험성을 최소화하면서도 경제성을 고려하도록 설계변수를 결정하였다. 이를 위해 확률적 최적화 방법론을 이용하여 Aspen HYSYS의 최적화 한계를 극복하였고, Aspen HYSYS와 Matlab의 연동을 통해 정량적 위험성 평가의 정확성을 높이며 최적화를 용이하게 하였다. 정량적 위험성 평가 결과, 공정 변수 중 안전성 확보를 위해 중요한 변수는 혼합냉매의 압력이었고, 0.5~10%의 운전비용 증가를 통해 잠재적 위험성을 4~18% 줄일 수 있었다. 비용을 크게 증가시킬수록 위험성의 절대적 수치는 낮아지지만 비용 대비 위험성 감소의 효과는 떨어졌다. 이처럼 공정모사와 정량적 위험성 평가 기법의 통합은 태생적으로 보다 안전한 공정의 설계가 가능하게 하고, 기초설계 단계에서부터 공정 내 위험요인을 수치적으로 확인할 수 있어 위험요인이 적은 특성을 갖도록 공정을 설계하는데 도움이 될 것이다.

Keywords

References

  1. Koo, J., Kim, S., Kim, H., Kim, Y. and Yoon, E. S., "A Systematic Approach Towards Accident Analysis and Prevention," Korean J. Chem. Eng., 26(6), 1476-1483 (2009). https://doi.org/10.2478/s11814-009-0262-z
  2. So, W., Kim, Y. H., Lee, C. J., Shin, D. and Yoon, E. S., "Optimal Layout of Additional Facilities for Minimization of Domino Effects Based on Worst-case Scenarios," Korean J. Chem. Eng., 28(3), 656-666(2011). https://doi.org/10.1007/s11814-010-0445-7
  3. Kim, Y., So, W., Shin, D. and Yoon, E. S., "Safety Distance Analysis of Dimethylether Filling Stations Using a Modified Individual Risk Assessment Method," Korean J. Chem. Eng., 28(6), 1322-1330(2011). https://doi.org/10.1007/s11814-010-0511-1
  4. Park, K., Koo, J., Shin, D., Lee, C. J. and Yoon, E. S., "Optimal Multi-floor Plant Layout with Consideration of Safety Distance Based on Mathematical Programming and Modified Consequence Analysis," Korean J. Chem. Eng., 28(4), 1009-1018(2011). https://doi.org/10.1007/s11814-010-0470-6
  5. Park, J., Lee, Y., Yoon, Y., Kim, S. and Moon, I., "Development of a Web-based Emergency Preparedness Plan System in Korea," Korean J. Chem. Eng., 28(11), 2110-2115(2011). https://doi.org/10.1007/s11814-011-0096-3
  6. Jang, N., Dan, S., Shin, D., Lee, G. and Yoon, E., "The Role of Process Systems Engineering for Sustainability in the Chemical Industries," Korean Chem. Eng. Res., 51(2), 221-225(2013). https://doi.org/10.9713/kcer.2013.51.2.221
  7. Shariff, A. M., Rusli, R., Leong, C. T., Radhakrishnan, V. R. and Buang, A., "Inherent Safety Tool for Explosion Consequences Study," J. Loss Prevent. Proc., 19, 409-418(2006). https://doi.org/10.1016/j.jlp.2005.10.008
  8. Shah, N. M., Hoadley, A. F. A. and Rangaiah, G. P., "Inherent Safety Analysis of a Propane Precooled Gas-phase Liquefied Natural Gas Process," Ind. Eng. Chem. Res., 48, 4917-4927(2009). https://doi.org/10.1021/ie8015939
  9. Aspelund, A., Gundersen, T., Myklebust, J., Nowak, M. P. and Tomasgard, A., "An Optimization-simulation Model for a Simple LNG Process," Comput. Chem. Eng., 34, 1606-1617(2010). https://doi.org/10.1016/j.compchemeng.2009.10.018
  10. Venkatarathnam, G., Cryogenic mixed refrigerant processes, Springer(2008).
  11. Woodward, J. L., Estimating the flammable mass of a vapor cloud, CCPS of the AIChE(1998).
  12. GPSA, GPSA Engineering data book, 12th ed., Volume II, Gas Processors Suppliers Association(2004).
  13. CEPPO, Risk management program guidance for offsite consequence analysis, United States Environmental Protection Agency(1999).
  14. TNO, Method for the calculation of physical effects (Yellow Book), Committee for the Prevention of Disasters(1997).
  15. Swenson, L. K., Single mixed refrigerant, closed loop process for liquefying natural gas, U.S. Patent 4,033,735(1997).
  16. Seider, W. D., Seader, J. D., Lewin, D. R. and Widagdo, S., Product and Process Design Principles: Synthesis, Analysis and Design, 3rd ed., Wiley(2009).
  17. Hansen, N. and Ostermeier, A., "Completely Derandomized Self-Adaptation in Evolution Strategies," Evol. Comput., 9(2), 159-195 (2001). https://doi.org/10.1162/106365601750190398
  18. Hansen, N. and Ostermeier, A., "Adapting Arbitrary Normal Mutation Distributions in Evolution Strategies: the Covariance Matrix Adaptation," Proceedings of IEEE International Conference on Evolutionary Computation, 312-317(1996).
  19. Hansen, N., Muller, S. D. and Koumoutsakos, P., "Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES)," Evol. Comput., 11(1), 1-18(2003). https://doi.org/10.1162/106365603321828970
  20. Hansen, N. and Kern, S., "Evaluating the CMA Evolution Strategy on Multimodal Test Functions," Lect. Notes Comput. SC., 282-291(2004).
  21. Beyer, H. G. and Schwefel, H. P., Evolution Strategies - A Comprehensive Introduction," Nat. Comp., 1(1), 3-52(2002).
  22. Hoffmeister, F. and XBack, T., "Genetic Algorithms and Evolution Strategies: Similarities and Differences," Lect. Notes Comput. SC., Springer, 455-469(1991).
  23. Hansen, N., Auger, A., Ros, R., Finck, S. and Posik, P., "Comparing Results of 31 Algorithms from the Black-Box Optimization Benchmarking BBOB-2009,"Workshop Proceedings of the GECCO Genetic and Evolutionary Computation Conference 2010(2010).
  24. https://www.lri.fr/-hansen/cmaapplications.pdf.
  25. N. Hansen, "The CMA Evolution Strategy: A Tutorial," https://www.lri.fr/-hansen/cmatutorial.pdf (2011).
  26. AspenTech, Aspen HYSYS Customization Guide, Aspen Technology, Inc.(2011).

Cited by

  1. Potential Explosion Risk Comparison between SMR and DMR Liquefaction Processes at Conceptual Design Stage of FLNG vol.32, pp.2, 2018, https://doi.org/10.26748/KSOE.2018.4.32.2.095
  2. 추진시험설비의 사고피해영향분석 및 리스크 감소방안 vol.54, pp.3, 2014, https://doi.org/10.9713/kcer.2016.54.3.360