• Title/Summary/Keyword: bio-solid

Search Result 416, Processing Time 0.032 seconds

The ability of absorption and physicochemical properties of chitosan prepared from fungi

  • Kim, Bong-Seob;Lee, Kook-Eui;Suh, Myung-Gyo;Roh, Jong-Su;Lee, Yong-Hee;Suh, Jung-Ho
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.116-122
    • /
    • 2003
  • The physicochemical properties of fungal chitosan at 95$^{\circ}C$ and 40$^{\circ}C$ acid treatment was as follows respectively. The nitrogen content was 6.71%, 6.91%, the viscosity 2.23cps, 2.21cps, the acetylation 12.0%, 12.7% and the molecular weight 3.12${\times}$10$\^$5/ Dalton, 3.01${\times}$10$\^$5/ Dalton. The absorbency band of reference, FCs-40 and FCs-95 in I.R. spectra was almost in accord with one another. In solid state NMR spectra, methyl group(-CH$_3$) was observed lightly. That means which deacetylation was well occurred. Carbonyl group(C=O) was not observed. C$_1$ to C$\_$6/ in solid state NMR was well observed seperately enough.

  • PDF

Establishment of Cell Suspension Cultures and Plant Regeneration in White Dandelion (Taraxacum coreanum NAKAI.)

  • Sun, Yan-Lin;Kim, Jae-Hak;Hong, Soon-Kwan
    • Korean Journal of Plant Resources
    • /
    • v.24 no.3
    • /
    • pp.280-285
    • /
    • 2011
  • In this study, we established a novel somatic embryogenesis and plant regeneration system through cell suspension culture of white dandelion (Taraxacum coreanum NAKAI.). Embryogenic calli could be initiated from leaf and root explants of sterile seedlings on solid Murashige and Skoog (MS) medium supplemented with 1.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) after 3-week cultures. To proliferate embryogenic calli rapidly, cell suspension culture was performed with transferred to liquid MS medium with various combinations of plant growth regulators (PGRs) including 2,4-D, ${\alpha}$-naphthalene acetic acid (NAA), indole-3-acetic acid (IAA), $N^6$-benzylamino purine (BAP), thidiazuron (TDZ), and kinetin. During suspension cultures, embryogenic calli not only greatly proliferated, but shoot organogenesis also simultaneously occurred from the surface of somatic embryos. Among them, TDZ at lower concentration, 0.1 mg/L produced the highest efficiency of somatic embryo formation and shoot organogenesis. Rooting of embryogenic calli with adventitious shoots was done on solid MS medium containing 0.1 mg/L NAA and 0.3% activated carbon. Nearly 80% of embryogenic calli with shoot organogenesis could be rooted normal. Well-rooted plantlets were transferred into pots under a greenhouse condition, and plants derived from this system appeared phenotypically normal.

Estimation of Biomass Resources Potential (바이오매스 자원 잠재량 산정)

  • Lee, Joon-pyo;Park, Soon-chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • Biomass has been used for energy sources from the prehistoric age. Biomass are converted into solid, liquid or gaseous fuels and are used for heating, electricity generation or for transportation recently. Solid biofuels such as bio-chips or bio-pellet are used for heating or electricity generation. Liquid biofuels such as biodiesel and bioethanol from sugars or lignocellulosics are well known renewable transportation fuels. biogas produced from organic waste are also used for heating, generation and vehicles. Biomass resources for the production of above mentioned biofuels are classified under following 4 categories, such as forest biomass, agricultural residue biomass, livestock manure and municipal organic wastes. The energy potential of those biomass resources existing in Korea are estimated. The energy potential for dry biomass (forest, agricultural, municipal waste) were estimated from their heating value contained, whereas energy potential of wet biomass (livestock manure, food waste, waste sludge) is calculated from the biological methane potential of them on annual basis. Biomass resources potential of those 4 categories in Korea are estimated to be as follows. Forest biomass 355.602 million TOE, agricultural biomass 4.019 million TOE, livestock manure biomass 1.455 million TOE, and municipal organic waste 1.074 million TOE are available for biofuels production annually.

The High-throughput Solid-Phase Extraction in the Field of Synthetic Biology: Applications for the Food Industry and Food Managements

  • Hyeri SEONG;Min-Kyu KWAK
    • The Korean Journal of Food & Health Convergence
    • /
    • v.10 no.3
    • /
    • pp.19-22
    • /
    • 2024
  • The field of synthetic biology has emerged in response to the ongoing progress in the life sciences. Advances have been made in medicine, farming, eating, making materials, and more. Synthetic biology is the exploration of using living organisms to create new organisms. By manipulating specific genes to express targeted proteins, proteins can be created that are both productive and cost-effective. Solid-phase extraction (SPE) and liquid-liquid extraction (LLE) are employed for protein separation during the production process involving microorganisms. This study centers on Scanning Probe Microscopy (SPM) to showcase its utility in the food industry and food management. SPE is predominantly utilized as a pretreatment method to eliminate impurities from samples. In comparison to LLE, this method presents benefits such as decreased time and labor requirements, streamlined solvent extraction, automation capabilities, and compatibility with various other analytical instruments. Anion exchange chromatography (AEC) utilizes a similar methodology. Pharmaceutical companies utilize these technologies to improve the purity of biopharmaceuticals, thereby guaranteeing their quality. Used in the food and beverage industry to test chemical properties of raw materials and finished products. This exemplifies the potential of these technologies to enhance industrial development and broaden the scope of applications in synthetic biology.

Economic Analysis of Livestock Manure Solid Fuel Manufacturing and Power Generation Facility (가축분뇨 고체연료 제조 및 발전시설의 경제성 분석)

  • Kim, Chang-Gyu;Yoon, Young-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.2
    • /
    • pp.29-42
    • /
    • 2022
  • The government promotes the 2050 carbon-neutral policy. Therefore, the concern to convert livestock manure into energy is increasing for the reduction of greenhouse gases generated in the livestock industry sector. In this study, the economic feasibility of the livestock manure solid fuel power generation facility, which is a major consumer of livestock manure solid fuel, was assessed to expand the demand for livestock manure solid fuel. The production cost of livestock manure solid fuel showed the lowest production cost of 97.4 thousand won/ton when dried using solid fuel at a 200 ton/day scale bio-drying facility. The livestock manure solid fuel power generation facility showed economic feasibility at a REC weight of 1.5 in the case of the bio-drying facility, so it was necessary to set a REC weight of 1.5 or more to expand the demand for livestock manure solid fuel. The conversion of livestock manure into solid fuel has various environmental benefits, such as the reduction of greenhouse gases and the effect of reducing non-point pollutants in the water system. Therefore, in order to expand livestock manure solid fuel production facility, it was required to review the feasibility including various environmental benefits.

A Study on Bio-solids Applicability as Soil Stabilizer (Bio-solids의 토양 안정화제 활용 가능성에 대한 연구)

  • Yang, Joo-Kyung;Kang, Seon-Hong;Lee, Chun-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.257-264
    • /
    • 2011
  • Recycling of industrial products as the stabilizers can be proper handling of industrial products and has positive side in terms of recycling of wastes. In this study, the final aims were to evaluate the usability as stabilizer of Bio-solids which was generated from contaminated soil with heavy metals after primary process and to compare the treatment efficiency with slag being currently applied in many existing sites. Soluble and exchangeable forms have closely related to pollution of groundwater and plant growth and they can be used to determine the effect of the stabilization efficiency. Slag and Bio-solids were tested to investigate the capacity of stabilizing arsenic. Slag treatment process 4 (PS-ball 5%) showed higher leachate concentration rather to 0.84% compared to treatment 1 (blank) based on an average of 0.63%. The other hand treatment 4 (Bio-solids 5%) showed the lowest soluble and exchangeable forms to 0.57% when Bio-solids was applied to stabilize arsenic. Thus, the leaching of arsenic will be more reduced if the Bio-solids are used as stabilizer in stead of slag which is being currently used in many fields.

Stable Microbial Community and Specific Beneficial Taxa Associated with Natural Healthy Banana Rhizosphere

  • Fu, Lin;Ou, Yannan;Shen, Zongzhuan;Wang, Beibei;Li, Rong;Shen, Qirong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1624-1628
    • /
    • 2019
  • Banana planting altered microbial communities and induced the enrichment of Fusarium oxysporum in rhizosphere compared with that of forest soil. Diseased plant rhizosphere soil (WR) harbored increased pathogen abundance and showed distinct microbial structures from healthy plant rhizosphere soil (HR). The enriched taxon of Bordetella and key taxon of Chaetomium together with some other taxa showed negative associations with pathogen in HR, indicating their importance in pathogen inhibition. Furthermore, a more stable microbiota was observed in HR than in WR. Taken together, the lower pathogen abundance, specific beneficial microbial taxa and stable microbiota contributed to disease suppression.

Evaluation of Methods for Cyanobacterial Cell Lysis and Toxin (Microcystin-LR) Extraction Using Chromatographic and Mass Spectrometric Analyses

  • Kim, In S.;Nguyen, Giang-Huong;Kim, Sung-Youn;Lee, Jin-Wook;Yu, Hye-Weon
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.250-254
    • /
    • 2009
  • Contamination of microcystins, a family of heptapeptide hepatotoxins, in eutrophic water bodies is a worldwide problem. Due to their poisoning effects on animals and humans, there is a requirement to characterize and quantify all microcystins present in a sample. As microcystins are, for most part, intracellular toxins produced by some genera of cyanobacteria, lysing cyanobacterial cells to release all microcystins is considered an important step. To date, although many cell lysis methods have been used, little work has been conducted comparing the results of those different methods. In this study, various methods for cell lysis and toxin extraction from the cell lysates were investigated, including sonication, bead beating, freeze/thaw, lyophilization and lysing with TritonX-100 surfactant. It was found that lyophilization, followed by extraction with 75% methanol, was the most effective for extracting toxins from Microcystis aeruginosa cells. Another important step prior to the analysis is removing impurities and concentrating the target analyte. For these purposes, a C18 Sep-Pak solid phase extraction cartridge was used, with the percentage of the eluent methanol also evaluated. As a result, methanol percentages higher than 75% appeared to be the best eluting solvent in terms of microcystin-leucine-arginine (MC-LR) recovery efficiency for the further chromatographic and mass spectrometric analyses.

Effects of Packing Materials on the Quality of Grape for Long-Term Market Circulation (장기유통을 위한 포장방법이 포도 품질변화에 미치는 영향)

  • 남상영;김경미;강한철;황종택;김태수
    • Food Science and Preservation
    • /
    • v.5 no.4
    • /
    • pp.315-319
    • /
    • 1998
  • In order to study the effect of packing materials on the quality of fares during storage period, grapes (Campbell Early) were packed with different materials such as expendable folystyrene (EPS) box, paper board box, biopaper board box, paper board box + small box, EPS box + (EPS dish + Bio-PE film sealing), md EPS box + (EPS dish + wrap sealing). The fruit weight loss was increased with the storage period by all the treatments. Weight loss was 6.38% lower in the EPS box+ (EPS dish + Bio film sealing) during 15 days of storage and 5.53% lower in EPS box + (EPS dish + wrap sealing) than that in the EPS box. The abnormal fruits were more increased in the sealing packing than in the non-sealing packing since water transpiration was prevented in the sealing treatment. Wilting fruits were also fewer in the sealing packing than that in the non-sealing treatment. The taste and appearance quality were worsened with increasing the storage days, whereas the appearance quality of the grapes in the bio paper board box was better. Hardness was scarecely changed in the EP5 box+ (EPS dish + Bio-PE film sealing) treatment than those by the other treatments. The soluble solid and acidity showed very little change but soluble solid content was more decreased in the sealing packing than that by the non-sealing treatment.

  • PDF

Analytical study of the properties of slow pyrolysis of biomass by-product of Indonesia (인도네시아 바이오매스 부산물의 저속 열분해 특성 분석)

  • Kang, Kieseop;Lee, Yongwoon;Park, Jinjae;Ryu, Changkook;Yang, Won
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.61-64
    • /
    • 2013
  • Biomass is well known for organic resources photosynthesized by carbon dioxide water in the air and thus it can be widely used in the form of energy and production for various kinds of materials. Through pyrolysis, biomass can be transformed into solid(biochar), liquid(bio-oil), and combustible gas on the different condition of temperature and heating rate. That's why biomass can be practically used to preprocess and produce a variety of elements. This work is to analyze the characteristics of slow pyrolysis of three different kinds of biomass extracted from Indonesia. They showed similar moisture content and combinations of combustible matters and had quite a large discrepancy in the ash among them like 2.1 & of Bagasse, 91% of PKS, and 20.9% of Paddy Straw, respectively. yield of biochar, solid form of the biomass, steadily decreased when the temperature went up and that of bio-oil the highest at the temperature of 500 degrees Celsius. At the same temperature range, PKS bio-oil showed 51.4 % of yield and Bagasse had 55.1% while it turned out that Paddy straw showed the lowest yield of 37.2%. The apparent density was also measured to figure out the density of each product from the pyrolysis experiments at the temperature of 500 degrees Celsius. The result was like these; the density of biochar was 0.17, the lowest, and that of Tree stem was 1.3 when mixed by an equal amount of biochar and bio-oil.

  • PDF