• 제목/요약/키워드: bio-degradable

검색결과 67건 처리시간 0.034초

Kenaf Is the Key to Go Green in the Era of Environmental Crisis: A Review

  • In-Sok Lee;Yu-Rim Choi;Ju Kim
    • 한국자원식물학회지
    • /
    • 제35권6호
    • /
    • pp.820-824
    • /
    • 2022
  • Ecologically sustainable means of development is the point to support environmental homeostasis. One of our roles is to find bio-degradable resources that can be substituted for petroleum-based products to effectively abide by the natural viability. To counter the issues of deforestation and preserve biodiversity, it is necessary to produce a non-wood crop that can fulfill the requirement for raw material from which several products can be produced. Kenaf (Hibiscus cannabinus), a member of the family Malvaceae, is showing sufficient potentiality along this road-map. Due to its rich fiber content, it has been used extensively in various fields for long, probably as early as 4,000 BC. At present, kenaf has been used as provider of paper, plastics, fiber glass, biofuel, activated carbon and epoxy composite. This obviously catch one's attention towards its capability to replace petroleum-based products as a whole. Moreover, the plant shows considerable relevance in decreasing pollutants by virtue of its enormous absorption capacity. These multiple applications of kenaf justify its credibility to be the best resource for the better world. The paper presents an overview on its numerous uses reported in the literature that we have investigated and its great potential as a valuable multipurpose crop.

The Fabrication of Thermal Sprayed Photocatalytic $TiO_{2}$ Coating on Bio-degradable Plastic

  • Bang, Hee-Seon;Bang, Han-sur
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.387-392
    • /
    • 2005
  • For the production of further functional bio-degradable plastic(polybutylene succinate:PBS) with $TiO_{2}$ as photocatalyst, which shows the decomposition of detrimental organic compound and pollutant under ultraviolet irradiation, we attempted to prepare $TiO_{2}$ coatings on PBS substrate by HVOF and plasma spraying techniques under various conditions. The microstructures of coatings were characterized with SEM and XRD analysis, and the photocatalytic efficiency of coatings was evaluated through the photo degradation of gaseous acetaldehyde. The effects of primary particle size and spraying parameters on the formation behavior, photo catalytic performance and mechanical characteristics of the coatings have been investigated. The results indicated that with respect to both the HVOF sprayed $P_{200}$ and $P_{30}$ coatings, the high anatase ratio off 100% can be achieved regardless of fuel gas pressure. On the other hand, the HVOF sprayed $P_{7}$ coating exhibited largely decreased anatase ratio (from 100% to 49.1%) with increasing the fuel gas pressure, which may be attributed to the much higher susceptibility to heat of 7nm agglomerated powder. In terms of photocatalytic efficiency, HVOF sprayed $P_{200}$ and $P_{30}$ coatings seem to predominate as compared to that of plasma sprayed $P_{200}$ coatings owing to the higher anatase ratio. However, the HVOF sprayed $P_{7}$ coatings didn't show the photo catalytic activity, which may result from the extremely small reaction surface area to the photo-catalytic activity and low anatase ratio. Such functional PBS with new roles is expected to cosiderably contribute to the reduction of aggravated environmel problem.

  • PDF

Preparation and Physical Properties of Poly(lactic acid) Bio-Composites using Surface Modified Microfibriled Celluloses

  • Yeo, Jun-Seok;Seong, Dong-Wook;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • 제50권1호
    • /
    • pp.62-67
    • /
    • 2015
  • The surface modification of microfibriled cellulose (MFC) was carried out through the hydrolysis-condensation reaction using (3-aminopropyl)triethoxysilane (APS) and 3-glycidyloxypropyltriethoxysilane (GPS) and then the modified cellulose was compounded with bio-degradable poly(lactic acid) (PLA). Also, pristine MFC was compounded with PLA as a control groups. The confirmation of surface modification for the pristine MFC was characterized by FT-IR and SEM/EDX. The thermal and mechanical properties of the PLA/MFC composites depended on the content of MFC and the type of silane coupling agents. From the thermal, morphological and mechanical behaviors of the PLA/MFC composites, it was found that GPS-MFC was more successful to improve the interface adhesion between PLA matrix and the surface of MFC than that of APS-MFC.

Preparation and Tactile Performance of Soluble Eggshell Membrane (S-ESM) Embedded Waterborne Polyurethane (WPU) Composite

  • Soohyun Joo;Tridib Kumar Sinha;Junho Moon;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • 제58권3호
    • /
    • pp.112-120
    • /
    • 2023
  • Herein, we propose a facile water-processible method to develop an eggshell membrane (ESM)-embedded waterborne polyurethane (WPU)-based bio-degradable and bio-compatible coating material that exhibits attractive tactile properties. Virgin ESM is not dispersible in water. Hence, to develop the ESM-based WPU composite, soluble ESM (S-ESM) was first extracted by de-crosslinking the ESM. The extracted S-ESM at different concentrations (0, 0.5, 1.0, 1.5 wt %) was mixed with WPU. Compared to virgin WPU, the viscosity of S-ESM/WPU dispersion and the in-plane coefficient of friction (COF) of the composite film surfaces decreased with an increase in the S-ESM content. In addition, an increase in the S-ESM content improved the tribo-positive characteristics of the film. Different good touch-feeling biomaterials, such as fur, feather, and human skin exhibit tribo-positivity. Thus, the enhanced tribo-positive characteristics of the S-ESM/WPU and the decrease in their COF owing to an increase in the S-ESM content imply the enhancement of its touch-feeling performance. The S-ESM embedded WPU composites have potential applications as coating materials in various fields, including automobile interiors and artificial leather.

Newly Developed BioDegradable Mg Alloys and Its Biomedical Applications

  • 석현광;김유찬;;차필령;조성윤;양석조
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.55.2-55.2
    • /
    • 2012
  • Intensive theoretical and experimental studies have been carried out at Korean Institute of Science and Technology (KIST) on controlling the bio absorbing rate of the Mg alloys with high mechanical strength through tailoring of electrochemical potential. Key technology for retarding the corrosion of the Mg alloys is to equalize the corrosion potentials of the constituent phases in the alloys, which prevented the formation of Galvanic circuit between the constituent phases resulting in remarkable reduction of corrosion rate. By thermodynamic consideration, the possible phases of a given alloy system were identified and their work functions, which are related to their corrosion potentials, were calculated by the first principle calculation. The designed alloys, of which the constituent phases have similar work function, were fabricated by clean melting and extrusion system. The newly developed Mg alloys named as KISTUI-MG showed much lower corrosion rate as well as higher strength than previously developed Mg alloys. Biocompatibility and feasibility of the Mg alloys as orthopedic implant materials were evaluated by in vitro cell viability test, in vitro degradation test of mechanical strength during bio-corrosion, in vivo implantation and continuous observation of the implant during in vivo absorbing procedures. Moreover, the cells attached on the Mg alloys was observed using cryo-FIB (focused ion beam) system without the distortion of cell morphology and its organ through the removal of drying steps essential for the preparation of normal SEM/TEM samples. Our Mg alloys showed excellent biocompatibility satisfying the regulations required for biomedical application without evident hydrogen evolution when it implanted into the muscle, inter spine disk, as well as condyle bone of rat and well contact interface with bone tissue when it was implanted into rat condyle.

  • PDF

Thermal-and Bio-degradation of Starch-Polyethylene Films Containing High Molecular Weight Oxidized-Polyethylene

  • Kim, Mee-Ra;Pometto, Anthony-L.
    • Preventive Nutrition and Food Science
    • /
    • 제3권1호
    • /
    • pp.27-35
    • /
    • 1998
  • Starch-polyethylene films containing high molecular weight(NW) oxidized-polyethylene and prooxidant were prepared , and thermal -and bio-degradability of the films were determined. Increased levels of starch resulted in a corresponding reduction in mechanical strength of the films. However, the addition of high MW oxidized-polyethylene did not significantly reduce the percent elongation of the films. Thefilms containing high MW oxidized-polyethylene andproosicant were degreaded faster than those containing no aadditive during the heat treatment. The films lost their measureable mechanical properties when their weight-average MW(Mw) fell below 50,000. Biodegradability of the films was determined by a pure culture assay with either Streptomyces badius 252.S. setonii 75Vi2 or S. viridosporous T7A, and by an extracellulr enzyme assay using S. setonii 75vi2. The results from pure culture assay indicated that biomass accumulation on the film surface inhibited chemical and biological degradation of the films. The extracellular enzyme assay demonstrated decrease of percent elongation and increase of carbonyl index of the films. Therefore, extracellular enzyme assay could be used as a good method to evaluate biodegradability of the films.

  • PDF

Comparable efficacy of silk fibroin with the collagen membranes for guided bone regeneration in rat calvarial defects

  • Kim, Jwa-Young;Yang, Byoung-Eun;Ahn, Jin-Hee;Park, Sang O;Shim, Hye-Won
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권6호
    • /
    • pp.539-546
    • /
    • 2014
  • PURPOSE. Silk fibroin (SF) is a new degradable barrier membrane for guided bone regeneration (GBR) that can reduce the risk of pathogen transmission and the high costs associated with the use of collagen membranes. This study compared the efficacy of SF membranes on GBR with collagen membranes (Bio-$Gide^{(R)}$) using a rat calvarial defect model. MATERIALS AND METHODS. Thirty-six male Sprague Dawley rats with two 5 mm-sized circular defects in the calvarial bone were prepared (n=72). The study groups were divided into a control group (no membrane) and two experimental groups (SF membrane and Bio-$Gide^{(R)}$). Each group of 24 samples was subdivided at 2, 4, and 8 weeks after implantation. New bone formation was evaluated using microcomputerized tomography and histological examination. RESULTS. Bone regeneration was observed in the SF and Bio-$Gide^{(R)}$-treated groups to a greater extent than in the control group (mean volume of new bone was $5.49{\pm}1.48mm^3$ at 8 weeks). There were different patterns of bone regeneration between the SF membrane and the Bio-$Gide^{(R)}$ samples. However, the absolute volume of new bone in the SF membrane-treated group was not significantly different from that in the collagen membrane-treated group at 8 weeks ($8.75{\pm}0.80$ vs. $8.47{\pm}0.75mm^3$, respectively, P=.592). CONCLUSION. SF membranes successfully enhanced comparable volumes of bone regeneration in calvarial bone defects compared with collagen membranes. Considering the lower cost and lesser risk of infectious transmission from animal tissue, SF membranes are a viable alternative to collagen membranes for GBR.

Development of Naturally Degradable "Rice Polymer" For Organic Weed Management of Red Pepper and Rice

  • Kang, C.K.;Nam, H.S.;Lee, Y.K.;Lee, S.B.;Lee, B.M.;Oh, Y.J.;Jee, H.J.;Hong, M.K.;Jung, K.W.;Lee, Y.J.;Choi, Y.H.
    • 한국유기농업학회지
    • /
    • 제19권spc호
    • /
    • pp.119-122
    • /
    • 2011
  • Among the developed bio-degradable polymer films as compared with transparent film(White), black polymer film was significantly more effective for controlling weeds in red pepper. Also, we found that white and black polymer mulching had 81.8% and 97.9% of managing weed controlling effects in rice, respectively. Compared to non-mulched rice paddy with water supply, the non-mulched rice paddy without any water supply has stopped its growth at 41 days after transplanting, while polymer-mulched rice paddy without water supply had about 60% of normally growing rice plants. This shows the polymer treatment has a remarkable effect on water and power saving, solution of herbicidal resistance, avoidance of herbicidal influence to eco-system etc. When the naturally decomposing polymer was used, a temperature was elevated as high as $4.7^{\circ}C$ on maximum and $2.6^{\circ}C$ on average. Also the naturally decomposing polymer accelerated rooting by 7 days and lowered a stress level from transplanting. The weed control effect mulched by polymer was remarkable as 98.7%. The polymer now, after 294 days treated on the rice paddy, has been completely decomposed.