References
- K. Oksman, M. Skrifvars, and J. F. Selin, "Natural Fibres as Reinforcement in Polylactic Acid (PLA) Composites", Compos. Sci. Technol., 63, 1317 (2003). https://doi.org/10.1016/S0266-3538(03)00103-9
- A. K. Bledzki and J. Gassan, "Composites Reinforced with Cellulose Based Fibres", Prog. Polym. Sci., 24, 221 (1999). https://doi.org/10.1016/S0079-6700(98)00018-5
- S. Shibata, Y. Cao, and I. Fukumoto, "Lightweight Laminate Composites Made from Kenaf and Polypropylene Fibres", Polym. Testing, 25, 142 (2006). https://doi.org/10.1016/j.polymertesting.2005.11.007
- A. Kljun, T. A. S. Benians, F. Goubet, F. Meulewaeter, H. P. Knox, and R. S. Blackburn, "Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes", Biomacromolecules, 12, 4121 (2011). https://doi.org/10.1021/bm201176m
- J. K. Kang, S. S. Im, Y. M. Lee, and J. R. Haw, "Preparation and Characterization of Polymer Composite Filled with High Content Biomass", Polymer-Korea, 19, 292 (1995).
- S. Iwamoto, A. Isogai, and T. Iwata, "Structure and Mechanical Properties of Wet-Spun Fibers Made from Natural Cellulose Nanofibers", Biomacromolecules, 12, 831 (2011). https://doi.org/10.1021/bm101510r
- H. Qi, J. Cai, L. Zhang, and S. Kuga, "Properties of Films Composed of Cellulose Nanowhiskers and a Cellulose Matrix Regenerated from Alkali/Urea Solution", Biomacromolecules, 10, 1597 (2009). https://doi.org/10.1021/bm9001975
- G. Siqueira, J. Bras, and A. Dufresne, "Cellulosic Bionanocomposites: A Review of Preparation Properties and Application", Polymer, 2, 728 (2010). https://doi.org/10.3390/polym2040728
- T. Zimmermann, E. Pohler, and T. Geiger, "Cellulose Fibrils for Polymer Reinforcement", Adv. Eng. Mater., 6, 754 (2004). https://doi.org/10.1002/adem.200400097
- T. Nishino, I. Matsuda, and K. Hirao, "All-Cellulose Composite", Macromolecules, 37, 7683 (2004). https://doi.org/10.1021/ma049300h
- W. Gindl and J. Keckes, "All-Cellulose Nanocomposite", Polymer, 46, 10221 (2005). https://doi.org/10.1016/j.polymer.2005.08.040
- A. P. Mathew, K. Oksman, and M. Sain, "Mechanical Properties of Biodegradable Composites from Poly Lactic Acid (PLA) and Microcrystlline Cellulose (MCC)", J. Appl. Polym. Sci., 97, 2014 (2005). https://doi.org/10.1002/app.21779
- J. Lunt, "Large-scale production, properties and commercial applications of polylactic acid polymers", Polym. Degrad. Stab., 59, 145 (1998). https://doi.org/10.1016/S0141-3910(97)00148-1
- R. E. Drumright, P. R. Gruber, and D. E. Henton, "Polylactic Acid Technology", Adv. Mater., 12, 1841 (2000). https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
- R. Mehta, V. Kumar, H. Bhuniam, and S. N. Upadhyay, "Synthesis of Poly(Lactic Acid): A Review", J. Macromol. Sci. Part C: Polym. Rev., 45, 325 (2005). https://doi.org/10.1080/15321790500304148
-
E. T. H. Vink, K. R. Rabago, D. A. Glassner, and P. R. Gruber, "Applications of life cycle assessment to NatureWorks
$^{TM}$ polylactide (PLA) production", Polym. Degrad. Stab., 80, 403 (2003). https://doi.org/10.1016/S0141-3910(02)00372-5 - L. Jiang, J. Zhang, and M. P. Wolcott, "Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: Reinforcing effects and toughening mechanisms", Polymer, 48, 7632 (2007). https://doi.org/10.1016/j.polymer.2007.11.001
- V. Krikorian, and D. J. Pochan, "Crystallization Behavior of Poly(l-lactic acid) Nanocomposites: Nucleation and Growth Probed by Infrared Spectroscopy", Macromolecules, 38, 6520 (2005). https://doi.org/10.1021/ma050739z
- S. Zhou, X. Zhang, X. Yu, J. Wang, J. Weng, X. Li, B. Feng, and M. Yin, "Hydrogen Bonding Interaction of Poly(d,l-Lactide)/hydroxyapatite Nanocomposites", Chem. Mater., 19, 247 (2007). https://doi.org/10.1021/cm0619398
- E. Bodros, I. Pillin, N. Montrelay, and C. Baley, "Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications?", Compos. Sci. Technol., 67, 462 (2007). https://doi.org/10.1016/j.compscitech.2006.08.024
- T. J. chung, B. H. Lee, H. J. Lee, H. J. Kwon, W. B. Jang, H.-J. Kim, and Y. G. Eom, "Performance Evaluation of Bio-Composites Composed of Acetylated Kenaf Fibers and Poly(Lactic acid) (PLA)", Elast. Compos., 46, 195 (2011).
- A. Marais, J. J. Kochumalayil, C. Nilsson, L. Fogelstrom, and E. K. Gamstedt, "Toward an alternative compatibilizer for PLA/cellulose composites: Grafting of xyloglucan with PLA", Carbohyd. Polym., 89, 1038 (2012). https://doi.org/10.1016/j.carbpol.2012.03.051
- A. N. Frone, S. Berlioz, J.-F. Chailan, and D. M. Panaitescu, "Morphology and thermal properties of PLA-cellulose nanofibers composites", Carbohyd. Polym., 91, 377 (2013). https://doi.org/10.1016/j.carbpol.2012.08.054
- L. Suryanegara, A. N. Nakagaito, and H. Yano, "The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites", Compos. Sci. Technol., 69, 1187 (2009). https://doi.org/10.1016/j.compscitech.2009.02.022
- J.-S. Yeo and S.-H. Hwang, "Preparation and characteristics of polypropylene-graft-maleic anhydride anchored microfibriled cellulose: its composites with polypropylene", J. Adhes. Sci. Technol., 29, 185 (2015). https://doi.org/10.1080/01694243.2014.980632
- R. Agrawal, N. S. Saxena, K. B. Sharma, S. Thomas, and M. S. Sreekala, "Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites", Mater. Sci. Eng. A., 277, 77 (2000). https://doi.org/10.1016/S0921-5093(99)00556-0
- G. H. D. Tonoli, U. P. Rodrigues Filho, H. Savastano, J. Bras, M. N. Belgacem, and F. A. Lahr, "Cellulose modified fibres in cement based composites", Compos. Part A., 40, 2046 (2009). https://doi.org/10.1016/j.compositesa.2009.09.016