• Title/Summary/Keyword: bio scaffold

Search Result 51, Processing Time 0.029 seconds

A Study of PCL and PET ablation by ultrashort laser (극초단 레이저를 이용한 PCL 및 PET 가공에 대한 연구)

  • Choi, Hae-Woon;Shin, Hyun-Myung
    • Laser Solutions
    • /
    • v.11 no.4
    • /
    • pp.1-6
    • /
    • 2008
  • This paper describes microscale laser structuring of electrospun(ES) PCL and PET nanofiber meshes. Electrospinning produces non-woven meshes of synthetic or natural materials fibers with diameters ranging from micron down to the nanometer scales that are advantageous for the supporting the growth of the small scale structures. Ultrashort laser found to be effective on the fabrication of engineeredtissue scaffold with minimum heat affect and ultra precision ablation patterns. The affect of energy range for ablation quality was analyzed and ablation characteristics of PCL and PET were compared.

  • PDF

Hydrogel and Platelet-Rich Plasma Combined Treatment to Accelerate Wound Healing in a Nude Mouse Model

  • Park, Yu Gil;Lee, In Ho;Park, Eun Soo;Kim, Jin Young
    • Archives of Plastic Surgery
    • /
    • v.44 no.3
    • /
    • pp.194-201
    • /
    • 2017
  • Background Platelet-rich plasma (PRP) contains high concentrations of growth factors involved in wound healing. Hydrogel is a 3-dimensional, hydrophilic, high-molecular, reticular substance generally used as a dressing formulation to accelerate wound healing, and also used as a bio-applicable scaffold or vehicle. This study aimed to investigate the effects of PRP and hydrogel on wound healing, in combination and separately, in an animal wound model. Methods A total of 64 wounds, with 2 wounds on the back of each nude mouse, were classified into 4 groups: a control group, a hydrogel-only group, a PRP-only group, and a combined-treatment group. All mice were assessed for changes in wound size and photographed on scheduled dates. The number of blood vessels was measured in all specimens. Immunohistochemical staining was used for the analysis of vascular endothelial growth factor (VEGF) expression. Results Differences in the decrease and change in wound size in the combined-treatment group were more significant than those in the single-treatment groups on days 3, 5, 7, and 10. Analysis of the number of blood vessels through histological examination showed a pattern of increase over time that occurred in all groups, but the combined-treatment group exhibited the greatest increase on days 7 and 14. Immunohistochemical staining showed that VEGF expression in the combined-treatment group exhibited its highest value on day 7. Conclusions This experiment demonstrated improved wound healing using a PRP-hydrogel combined treatment compared to either treatment individually, resulting in a decrease in wound size and a shortening of the healing period.

Preparation and Characterization of Gelatin-immobilized Bacterial Cellulose Scaffold for Tissue Engineering Using Gamma-ray Irradiation (감마선을 이용한 조직공학용 젤라틴이 개질된 미생물 셀룰로오스 지지체의 제작 및 특성)

  • Choi, Jong-Bae;Jeong, Sung In;Gwon, Hui-Jeong;Park, Jong-Seok;Nho, Young-Chang;Choi, Young-Hun;Park, Kyung Jin;Park, Man Yong;Shin, Heungsoo;Lim, Youn-Mook
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.159-164
    • /
    • 2012
  • Bacterial cellulose (BC) is generated from citrus gel by Gluconacetobacter hansenii TL-2C. BC has good properties such as high-burst pressure, high-water contact and the ultrafine highly nanofibrous structure of mimic natural extracellular matrix (ECM) for tissue engineering. In this study, acrylic acid (AAc) was grafted onto BC surfaces under aqueous conditions using gamma-ray irradiation, and then immobilized gelatin onto AAc-g-BC. The characterization of scaffolds was performed by scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), toluidine blue O (TBO) assay. Morphology of gelatin and AAc incorporation onto BC nanofibers did not changed. Our study suggests that gelatin-immobilized BC nanofibers scaffold has a potentiality to fabricate 3D nanofibrous scaffolds for tissue engineering.

Development of Cleaved Amplified Polymorphic Sequence Markers of Lentinula edodes Cultivars Sanbaekhyang and Sulbaekhyang (표고 품종 산백향과 설백향 구분을 위한 CAPS 마커 개발)

  • Moon, Suyun;Hong, Chang Pyo;Ryu, Hojin;Lee, Hwa-Yong
    • The Korean Journal of Mycology
    • /
    • v.49 no.1
    • /
    • pp.33-44
    • /
    • 2021
  • Lentinula edodes (Berk.) Pegler, the most produced mushroom in the world, is an edible mushroom with very high nutritional and pharmacological value. Currently, interest in the protection of genetic resources is increasing worldwide, and securing the distinction between new cultivars is very important. Therefore, the development of efficient molecular markers that can discriminate between L. edodes cultivars is required. In this study, we developed cleaved amplified polymorphic sequence (CAPS) markers for the identification of L. edodes cultivars (Sanbaekhyang and Sulbaekhyang). These markers were developed from whole genome sequencing data from L. edodes monokaryon strain B17 and resequencing data from 40 cultivars. A nucleotide deletion existed in scaffold 19 POS 214449 in Sanbaekhyang (GT→G), and a single nucleotide polymorphism changed in scaffold 7 POS 215801 in Sulbaekhyang (G→A). The restriction enzymes Hha I and HpyCH4IV distinguished Sanbaekhyang and Sulbaekhyang, respectively, from other cultivars. Thus, we developed two CAPS markers for the identification of the L. edodes cultivars Sanbaekhyang and Sulbaekhyang.

3D Printing Technology and Its Application on Tissue Engineering and Regenerative Medicine (3D 프린팅 기술의 조직공학 및 재생의학 분야 응용)

  • Lee, Junhee;Park, Sua;Kim, Wan Doo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • In this paper, we introduced various 3D printing technology and it's application on tissue engineering and regenerative medicine. Using the 3D printing technology, Korea Institute of Machinery and Materials (KIMM) has developed 3D bio-printing system. Various 3D tissue engineered scaffolds have been fabricated by the 3D bio-printing system. Cell printing system has been also developed and it is the fundamental technology for organ regeneration in tissue engineering and regenerative medicine.

Pulsatility Estimation of a Pulsatile Decellularizing Device for the Fabrication of Organ Scaffold (생체장기용 지지체 제작을 위한 박동형 탈세포화 장치의 박동성 평가)

  • Kim, Dong Sun;Yang, Se-Ran;Park, Sung Min;Choi, Seong Wook
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.62-73
    • /
    • 2017
  • To identify a solution for the restricted availability of healthy lungs and the high risk of immune rejections following organ transplantation, tissue engineering techniques for culturing lungs have been studied by many research groups. The most promising method for culturing lungs is the utilization of a bio-scaffold that was prepared using harvested organs from human donors or other animals by removing their original cells. In this study, a pulsatile perfusion pump was used to alleviate the cell removal effect with the high fluid-dynamic power of the perfusion stream during the decellularization process, while other conventional studies focused on chemical methods to identify efficient detergents. The purpose of this study was to analyze the developed device by using energy equivalent pressure (EEP), which is an indicator of pulsatility, to understand the characteristics of pulsatile energy transmitted according to the load size by using the artificial model and compare it with the measured EEP. The pulsatility of the device can be estimated with the concept of fluid-dynamic energy during a particular constant time period or fluid-dynamic power represented as EEP and EEP increment. Because the measured EEP of perfusion flow during decellularization can be changed by the amount of fluid leakage and the degree of clogging in the capillary vessels, EEP should be measured to determine whether the decellularization is progressing without problems. The decrement of EEP caused by the high perfusion resistance was observed from some experimental results that were obtained with artificial models. EEP can be used to monitor the decellularization process after analyzing the varying EEP according to the amount of load. It was confirmed that the EEP was maintained at a high level in the experiment using the harvested lungs from 12-13-week-old rats. In addition, it was confirmed that the cell removal time was faster than when continuous perfusion was performed. In this study, pulsatile power delivered to the lungs was measured to monitor the process of cell removal, and it serve as the evidence for efficient decellularization.

Fabrication and characterization of 3-D porous scaffold by polycaprolactone (폴리카프로락톤을 이용한 3차원 다공성 지지체 제조 및 특성 분석)

  • Kim, Jin-Tae;Bang, Jung Wan;Hyun, Chang-Yong;Choi, Hyo Jeong;Kim, Tae-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.58-65
    • /
    • 2016
  • This study was a preparatory experiment aimed the development of membrane scaffolds for tissue engineering. A PCL composite solution contained sodium chloride(NaCl). PCL porous membrane scaffolds were formed on a glass casting plate using a film applicator and immersed in distilled water to remove the NaCl reaching after drying. NaCl was used as a pore former for a 3 dimensional pore net-work. The dry condition parameters were $4^{\circ}C$, room temperature (RT) and $40^{\circ}C$ for each different temperatures in the drying experiment. SEM revealed the morphology of the pores in the membrane after drying and evaluated the in vitro cytotoxicity for basic bio-compatibility. The macro and micro pores existed together in the scaffold and showed a 3-dimensional pore net-working morphology at RT. The in vitro cytotoxicity test result was "grade 2" in accordance with the criterion for cytotoxicity by ISO 10993-5. The dry condition affected the formation of a 3 dimensional pore network and micro and macro pores. Therefore, these results are expected provide the basic process for the development of porous membrane scaffolds to control degradation and allow drug delivery.

Effects of Binding Treatment of Branch on Fruit Enlargement and Coloring of 'Fuyu' Persimmon Fruits (단감 '부유'의 과실 비대와 착색에 대한 결박 처리 영향)

  • Kim, Ho-Cheol;Bae, Hyun-Ju;Kim, Tae-Choon
    • Journal of Bio-Environment Control
    • /
    • v.19 no.2
    • /
    • pp.117-121
    • /
    • 2010
  • To investigate effects of binding treatments of branches (FMB, fruiting mother branch; PSB, secondary scaffold branch; SSB, primary scaffold branch) on enlargement and coloring of persimmon 'Fuyu' fruits in ripening period, the branches were bound by steel wire. For eight weeks after binding treatments, Hunter $a^*$ of fruit peel in FMB and SSB binding treatments was more increased than in the others. In fruit characteristics harvested at eight weeks after the binding treatments, the fruit weight was heavier in the binding treatments than in control, the first of those was in SSB binding. The fruit height was higher in SSB binding than in the others, but the fruit diameter was longer in FMB and SSB binding treatments. Solid soluble content was higher in FMB and PSB binding treatments. $Chroma^*$ of the fruit peel was higher in FMB and PSB binding treatments as Hunter $a^*$ and $b^*$ values were higher and lower in FMB and SSB binding treatments, respectively. Lycopene and $\beta$-carotene content in the fruit peel were higher significantly in PSB and SSB binding treatments, total chlorophyll content in all the binding treatments was lower than in control.

THE EFFECTS OF BIO-$OSS^{(R)}$ AS A SCAFFOLDS DURING SINUS BONE GRAFT USING MESENCHYMAL STEM CELLS IN RABBIT (가토에서 자가유래 골아줄기세포를 이용한 상악동 골 이식술시 비계체로서 Bio-$Oss^{(R)}$의 효과에 관한 연구)

  • Lee, Jun;Sung, Dae-Hyuk;Choi, Jae-Young;Choi, Sung-Rym;Cha, Su-Ryun;Jang, Jae-Deog;Kim, Eun-Chul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.5
    • /
    • pp.405-418
    • /
    • 2007
  • Mesenchymal stem cells(MSCs) have been though to be multipotent cells that can replicate that have the potential to differentiate into lineages of mesenchymal tissue including the bone, cartilage, fat, tendon, muscle, and marrow stroma. Especially, scaffolds to support cell-based tissue engineering are critical determinants of clinical efforts to regenerate and repair the body. Selection of a matrix carrier imvolves consideration of the matrix's role as a scaffold for physical support and host tissue integration as well as its ability to support of synergize the osteoinductive program of the implanted mesenchymal stem cell. The aim of this study is to evaluate the effect of autobone and Bio-$Oss^{(R)}$ to adherent mesenchymal stem cells as scaffolds on sinus augmentation with fibrin glue mixture in a rabbit model. 16 New Zealand White rabbits were divided randomly into 4 groups based on their time of sacrifice(1, 2, 4 and 8 weeks). First, mesenchymal stem cells were isolated from iliac crest marrow of rabbits and expanded in vitro. Cell culture was performed in accordance with the technique described by Tsutsumi et al. In the present study, the animals were sacrificed at 1, 2, 4 and 8 weeks after transplantation, and the bone formation ability of each sides was evaluated clinically, radiologically, histologically and histomorphologically. According to the histological observations, autobone scaffolds group showed integrated graft bone with host bone from sinus wall. At 2 and 4 weeks, it showed active newly formed bone and neovascularization. At 8 weeks, lamellae bone was observed in sinus graft material area. Radiologically, autobone with stem cell showed more radiopaque than Bio-$Oss^{(R)}$ scaffolds group. there were significant differences in bone volume between 4 and 8 weeks(p<0.05).

Fabricating Highly Aligned Electrospun Poly(${\varepsilon}$-caprolactone) Micro/Nanofibers for Nerve Tissue Regeneration (신경세포 재생을 위한 고배열성 Poly(${\varepsilon}$-caprolactone) 마이크로/나노섬유 제조 공정에 관한 연구)

  • Yoon, Hyeon;Lee, Haeng-Nam;Park, Gil-Moon;Kim, Geun-Hyung
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.185-190
    • /
    • 2010
  • Recently, an electrospinning process, which is one of various nanotechnologies, has been used in fabricating micro/nanosized fibers. The fabricated electrospun micro/nanofibers has been widely applied in biomedical applications, specially in tissue regeneration. In this study, we fabricated highly aligned electrospun biodegradable and biocompatible poly(${\varepsilon}$-caprolactone)(PCL) micro/nanofibers by using a modified electrospinning process supplemented with a complex electric field. From this process, we can attain highly aligned electrospun nanofibers compared to that fabricated with the normal electrospinning process. To observe the feasibility of the highly aligned electrospun mat as a biomedical scaffold, nerve cells(PC-12) was cultured and it was found that the cells those were well oriented to the direction of aligned fibers.