DOI QR코드

DOI QR Code

Development of Cleaved Amplified Polymorphic Sequence Markers of Lentinula edodes Cultivars Sanbaekhyang and Sulbaekhyang

표고 품종 산백향과 설백향 구분을 위한 CAPS 마커 개발

  • Received : 2021.01.20
  • Accepted : 2021.02.24
  • Published : 2021.03.31

Abstract

Lentinula edodes (Berk.) Pegler, the most produced mushroom in the world, is an edible mushroom with very high nutritional and pharmacological value. Currently, interest in the protection of genetic resources is increasing worldwide, and securing the distinction between new cultivars is very important. Therefore, the development of efficient molecular markers that can discriminate between L. edodes cultivars is required. In this study, we developed cleaved amplified polymorphic sequence (CAPS) markers for the identification of L. edodes cultivars (Sanbaekhyang and Sulbaekhyang). These markers were developed from whole genome sequencing data from L. edodes monokaryon strain B17 and resequencing data from 40 cultivars. A nucleotide deletion existed in scaffold 19 POS 214449 in Sanbaekhyang (GT→G), and a single nucleotide polymorphism changed in scaffold 7 POS 215801 in Sulbaekhyang (G→A). The restriction enzymes Hha I and HpyCH4IV distinguished Sanbaekhyang and Sulbaekhyang, respectively, from other cultivars. Thus, we developed two CAPS markers for the identification of the L. edodes cultivars Sanbaekhyang and Sulbaekhyang.

본 연구에서는 국내에 유통되고 있는 40개 표고 품종들로부터 산백향과 설백향의 구분이 가능한 CAPS 마커를 개발하였다. 제한효소 Hha I 과 HpyCH4IV를 이용한 밴드 패턴 분석을 통해 각각 산백향과 설백향을 다른 균주들과 구분하여 구별성을 확보할 수 있었다. 본 연구에서 개발된 CAPS 마커는 표고의 품종들 간에 유전적 다양성을 부여함으로써, 품종을 보호할 수 있는 분자생물학적 근거가 될 수 있다. 이로써 향후 유전자원에 대한 국가간 분쟁을 미연에 방지할 수 있을 것이다.

Keywords

Acknowledgement

This work was supported by the Golden Seed Project (Grant No. 216007-05-5-SBH20) from the Ministry of Agriculture, Food and Rural Affairs of Republic of Korea and the research grant of the Chungbuk National University in 2020.

References

  1. Chang S, Wasser S. The cultivation and environmental impact of mushrooms. New York: Oxford University Press; 2017.
  2. Royse DJ, Baars J, Tan Q. Current overview of mushroom production in the world. Edible and medicinal mushrooms: technology and applications. In: Zied DC, Pardo-Gimenez A, editors. Edible and medicinal mushrooms: technology and applications, Hoboken: Wiley-Blackwell; 2017. p. 5-13.
  3. Bisen P, Baghel RK, Sanodiya BS, Thakur GS, Prasad G. Lentinus edodes: A macrofungus with pharmacological activities. Curr Med Chem 2010;17:2419-30. https://doi.org/10.2174/092986710791698495
  4. Maeda Y, Takahama S, Yonekawa H. Four dominant loci for the vascular responses by the antitumor polysaccharide, lentinan. Immunogenetics 1998;47:159-65. https://doi.org/10.1007/s002510050341
  5. Bak WC, Lee BH, Ka KH. Characteristics of new Shiitake strain "Sanlim No. 7" produced by Di-mon hybridization method. Kor J Mycol 2010;38:25-8. https://doi.org/10.4489/KJM.2010.38.1.025
  6. Park CW, Chol KJ, Soh EH, Koh HJ. Study on the future development direction of plant variety protection system in Korea. Korean J Breed Sci 2016;48:11-21. https://doi.org/10.9787/KJBS.2016.48.1.011
  7. Jang YS, Kwon YR, Kim TH. Prospect and status of plant variety protection (PVP) of forest-sector in Korea. Korean J Breed Sci 2020;52:31-9. https://doi.org/10.9787/kjbs.2020.52.s.31
  8. Qin L-H, Tan Q, Chen M-J, Pan Y-J. Use of intersimple sequence repeats markers to develop strain-specific SCAR markers for Lentinula edodes. FEMS Microbiol Lett 2006;257:112-6. https://doi.org/10.1111/j.1574-6968.2006.00145.x
  9. Zhang R, Huang C, Zheng S, Zhang J, Ng TB, Jiang R, Zuo X, Wang H. Strain-typing of Lentinula edodes in China with inter simple sequence repeat markers. Appl Microbiol Biotechnol 2007;74:140-5. https://doi.org/10.1007/s00253-006-0628-7
  10. Kulkarni RK. DNA polymorphisms in Lentinula edodes, the shiitake mushroom. Appl Environ Microbiol 1991;57:1735-9. https://doi.org/10.1128/aem.57.6.1735-1739.1991
  11. Zhang Y, Molina FI. Strain typing of Lentinula edodes by random amplified polymorphic DNA assay. FEMS Microbiol Lett 1995;131:17-20. https://doi.org/10.1016/0378-1097(95)00228-W
  12. Fu LZ, Zhang HY, Wu XQ, Li H-B, Wei HL, Wu QQ, Wang LA. Evaluation of genetic diversity in Lentinula edodes strains using RAPD, ISSR and SRAP markers. World J Microb Biot 2010;26:709-16. https://doi.org/10.1007/s11274-009-0227-8
  13. Xiao Y, Liu W, Dai Y, Fu C, Bian Y. Using SSR markers to evaluate the genetic diversity of Lentinula edodes' natural germplasm in China. World J Microb Biot 2010;26:527-36. https://doi.org/10.1007/s11274-009-0202-4
  14. Liu J, Wang ZR, Li C, Bian YB, Xiao Y. Evaluating genetic diversity and constructing core collections of Chinese Lentinula edodes cultivars using ISSR and SRAP markers. J Basic Microbiol 2015;55:749-60. https://doi.org/10.1002/jobm.201400774
  15. Li HB, Wu XQ, Peng HZ, Fu LZ, Wei HL, Wu QQ, Jin QY, Li N. New available SCAR markers: Potentially useful in distinguishing a commercial strain of the superior type from other strains of Lentinula edodes in China. Appl Microbiol Biotechnol 2008;81:303-9. https://doi.org/10.1007/s00253-008-1671-3
  16. Liu JY, Ying ZH, Liu F, Liu XR, Xie BG. Evaluation of the use of SCAR markers for screening genetic diversity of Lentinula edodes strains. Curr Microbiol 2012;64:317-25. https://doi.org/10.1007/s00284-011-0069-0
  17. Moon S, Lee HY, Kim M, Ka KH, Ko HK, Chung JW, Koo CD, Ryu H. Development of cleaved amplified polymorphic sequence markers for the identification of Lentinula edodes cultivars Sanmaru 1ho and Chunjang 3ho. Kor J Mycol 2017;45:114-20. https://doi.org/10.4489/KJM.20170014
  18. Moon S, Lee HY, Ka KH, Koo CD, Ryu H. Development of a CAPS marker for the identification of the Lentinula edodes cultivar, 'Sanmaru 2ho'. J Mushroom 2018;16:51-6. https://doi.org/10.14480/JM.2018.16.1.51
  19. Agarwal M, Shrivastava N, Padh H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 2008;27:617-31. https://doi.org/10.1007/s00299-008-0507-z
  20. Konieczny A, Ausubel FM. A procedure for mapping Arabidopsis mutations using codominant ecotype-specific PCR-based markers. Plant J 1993;4:403-10. https://doi.org/10.1046/j.1365-313X.1993.04020403.x
  21. Kaundun S, Matsumoto S. Development of CAPS markers based on three key genes of the phenylpropanoid pathway in tea, Camellia sinensis (L.) O. Kuntze, and differentiation between assamica and sinensis varieties. Theor Appl Genet 2003;106:375-83. https://doi.org/10.1007/s00122-002-0999-9
  22. Kim SH, Song JH, Lee U, Ga KH, Shin HN, Kim CW, Kim MS, Yoo L, Jang YS. New varieties of special forest products developed by NIFoS. Seoul: National Institute of Forest Science; 2019.
  23. Park Y, Jang Y, Ryoo R, Lee B, Ka KH. Breeding and cultural characteristics of newly bred Lentinula edodes strain 'Sanjanghyang'. Kor J Mycol 2019;47:143-52.
  24. Park Y, Jang Y, Ryoo R, Ka KH. Breeding and cultural characteristics of a newly bred Lentinula edodes strain, 'Bambithyang'. J Mushroom 2020;18:145-50. https://doi.org/10.14480/JM.2020.18.2.145
  25. Shim D, Park SG, Kim K, Bae W, Lee GW, Ha BS, Ro HS, Kim M, Ryoo R, Rhee SK. Whole genome de novo sequencing and genome annotation of the world popular cultivated edible mushroom, Lentinula edodes. J Biotechnol 2016;223:24-5. https://doi.org/10.1016/j.jbiotec.2016.02.032
  26. Hillier LW, Marth GT, Quinlan AR, Dooling D, Fewell G, Barnett D, Fox P, Glasscock JI, Hickenbotham M, Huang W. Whole-genome sequencing and variant discovery in C. elegans. Nat methods 2008;5:183-8. https://doi.org/10.1038/nmeth.1179
  27. Healey A, Furtado A, Cooper T, Henry RJ. Protocol: A simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods 2014;10:21. https://doi.org/10.1186/1746-4811-10-21
  28. Shim D, Park SG, Kim K, Bae W, Lee GW, Ha BS, Ro HS, Kim M, Ryoo R, Rhee SK, et al. Whole genome de novo sequencing and genome annotation of the world popular cultivated edible mushroom, Lentinula edodes. J Biotechnol 2016;223:24-25. https://doi.org/10.1016/j.jbiotec.2016.02.032
  29. Zhang Z, Miteva MA, Wang L, Alexov E. Analyzing effects of naturally occurring missense mutations. Comput Math Methods Med 2012;2012:805827. https://doi.org/10.1155/2012/805827
  30. Hu J, Ng PC. Predicting the effects of frameshifting indels. Genome Biol 2012;13:R9. https://doi.org/10.1186/gb-2012-13-2-r9
  31. Hou L, Zhao H. A review of post-GWAS prioritization approaches. Frontiers in genetics 2013;4:280.
  32. Ng PC, Henikoff S. Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet 2006;7:61-80. https://doi.org/10.1146/annurev.genom.7.080505.115630
  33. Pham AT, Lee JD, Shannon JG, Bilyeu KD. A novel FAD2-1 A allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content. Theor Appl Genet 2011;123:793-802. https://doi.org/10.1007/s00122-011-1627-3
  34. Kunihisa M, Fukino N, Matsumoto S. Development of cleavage amplified polymorphic sequence (CAPS) markers for identification of strawberry cultivars. Euphytica 2003;134:209-15. https://doi.org/10.1023/B:EUPH.0000003884.19248.33
  35. Moriya Y, Yamamoto K, Okada K, Iwanami H, Bessho H, Nakanishi T, Takasaki T. Development of a CAPS marker system for genotyping European pear cultivars harboring 17 S alleles. Plant Cell Rep 2007;26:345-54. https://doi.org/10.1007/s00299-006-0254-y
  36. Reale S, Doveri S, Diaz A, Angiolillo A, Lucentini L, Pilla F, Martin A, Donini P, Lee D. SNP-based markers for discriminating olive (Olea europaea L.) cultivars. Genome 2006;49:1193-205. https://doi.org/10.1139/g06-068
  37. Caranta C, Thabuis A, Palloix A. Development of a CAPS marker for the Pvr4 locus: A tool for pyramiding potyvirus resistance genes in pepper. Genome 1999;42:1111-6. https://doi.org/10.1139/gen-42-6-1111
  38. Su Z, Hao C, Wang L, Dong Y, Zhang X. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet 2011;122:211-23. https://doi.org/10.1007/s00122-010-1437-z
  39. Ricciardi F, Del Cueto J, Bardaro N, Mazzeo R, Ricciardi L, Dicenta F, Sanchez-Perez R, Pavan S, Lotti C. Synteny-based development of CAPS markers linked to the sweet kernel LOCUS, controlling amygdalin accumulation in almond (Prunus dulcis (Mill.) DA Webb). Genes 2018;9:385. https://doi.org/10.3390/genes9080385
  40. Foulongne-Oriol M, Spataro C, Cathalot V, Monllor S, Savoie J-M. An expanded genetic linkage map of an intervarietal Agaricus bisporus var. bisporus × A. bisporus var. burnettii hybrid based on AFLP, SSR and CAPS markers sheds light on the recombination behaviour of the species. Fungal Genet Biol 2010;47:226-36. https://doi.org/10.1016/j.fgb.2009.12.003
  41. Shu Y, Li Y, Zhu Z, Bai X, Cai H, Ji W, Guo D, Zhu Y. SNPs discovery and CAPS marker conversion in soybean. Mol Biol Rep 2011;38:1841-6. https://doi.org/10.1007/s11033-010-0300-2
  42. Li D, Zeng R, Li Y, Zhao M, Chao J, Li Y, Wang K, Zhu L, Tian WM, Liang C. Gene expression analysis and SNP/InDel discovery to investigate yield heterosis of two rubber tree F1 hybrids. Sci Rep 2016;6:24984. https://doi.org/10.1038/srep24984
  43. Huq MA, Akter S, Jung YH, Nou IS, Cho YG, Kang KK. Genome sequencing, a milestone for genomic research and plant breeding. Plant Breed Biotech 2016;4:29-39. https://doi.org/10.9787/PBB.2016.4.1.29
  44. Montes I, Conklin D, Albaina A, Creer S, Carvalho GR, Santos M, Estonba A. SNP discovery in European anchovy (Engraulis encrasicolus L.) by high-throughput transcriptome and genome sequencing. PLoS One 2013;8:e70051 https://doi.org/10.1371/journal.pone.0070051
  45. Tsai HY, Hamilton A, Tinch AE, Guy DR, Gharbi K, Stear MJ, Matika O, Bishop SC, Houston RD. Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array. BMC genomics 2015;16:969. https://doi.org/10.1186/s12864-015-2117-9
  46. Lee YJ, Byeon EJ, Bae SH, Ji H, Lee GS, Yoon UH, Kim TH. Development of NGS-based new CAPS markers and QTL analysis of stem diameter using Milyang23/Gihobyeo recombinant inbred lines (MGRIL). Korean J Breed Sci 2016;48:217-233. https://doi.org/10.9787/KJBS.2016.48.3.217