• 제목/요약/키워드: bio materials

검색결과 2,366건 처리시간 0.032초

소산파의 복굴절을 이용한 광 도파관 센서 (Optical waveguide sensors using optical birefringence of evanescent fields)

  • Son, K.S.;Lee, H.Y.;Kim, W.K.;Lee, S.S.;Park, S.S.;Kwon, S.W.;Lee, E.C.;Park, J.W.;Ju, H.
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2008년도 하계학술발표회 논문집
    • /
    • pp.309-310
    • /
    • 2008
  • Polymer optical waveguides are fabricated with high-index materials deposited to strengthen exciations of evanescent field whose birefringence is utilized for optical sensing. Optical sensing properties are examined as a function of time, using different types of analyte solutions to extract noise-free signal induced by evanescent field birefringence. It is observed that sensing signal can be free of initial noise that may obscure real signal recognition, when glycerol is used for sensing characterization, due to slow accumulation process following adsorption of analyte material onto the sensing surface of the waveguide.

  • PDF

Experimental and microstructural evaluation on mechanical properties of sisal fibre reinforced bio-composites

  • Kumar, B. Ravi;Hariharan, S.S.
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.299-306
    • /
    • 2019
  • The natural fibre composites are termed as bio-composites. They have shown a promising replacement to the current carbon/glass fibre reinforced composites as environmental friendly materials in specific applications. Natural fibre reinforced composites are potential materials for various engineering applications in automobile, railways, building and Aerospace industry. The natural fibre selected to fabricate the composite material is plant-based fibre e.g., sisal fibre. Sisal fibre is a suitable reinforcement for use in composites on account of its low density, high specific strength, and high hardness. Epoxy is a thermosetting polymer which is used as a resin in natural fibre reinforced composites. Hand lay-up technique was used to fabricate the composites by reinforcing sisal fibres into the epoxy matrix. Composites were prepared with the unidirectional alignment of sisal fibres. Test specimens with different fibre orientations were prepared. The fabricated composites were tested for mechanical properties. Impact test, tensile test, flexural test, hardness test, compression test, and thermal test of composites had been conducted to assess its suitability in industrial applications. Scanning electron microscopy (SEM) test revealed the microstructural information of the fractured surface of composites.

Transmission Electron Microscopy Study of Stacking Fault Pyramids Formed in Multiple Oxygen Implanted Silicon-on-Insulator Material

  • Park, Ju-Cheol;Lee, June-Dong;Krause, Steve J.
    • Applied Microscopy
    • /
    • 제42권3호
    • /
    • pp.151-157
    • /
    • 2012
  • The microstructure of various shapes of stacking fault pyramids (SFPs) formed in multiple implant/anneal Separation by Implanted Oxygen (SIMOX) material were investigated by plan-view and cross-sectional transmission electron microscopy. In the multiple implant/anneal SIMOX, the defects in the top silicon layer are confined at the interface of the buried oxide layer at a density of ${\sim}10^6\;cm^{-2}$. The dominant defects are perfect and imperfect SFPs. The perfect SFPs were formed by the expansion and interaction of four dissociated dislocations on the {111} pyramidal planes. The imperfect SFPs show various shapes of SFPs, including I-, L-, and Y-shapes. The shape of imperfect SFPs may depend on the number of dissociated dislocations bounded to the top of the pyramid and the interaction of Shockley partial dislocations at each edge of {111} pyramidal planes.

Highly Efficient, Flexible Thin Film Nanogenerator

  • 이건재
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.10.1-10.1
    • /
    • 2011
  • Energy harvesting technologies converting external sources (such as thermal energy, vibration and mechanical energy from the nature sources of wind, waves or animal movements) into electrical energy is recently a highly demanding issue in the materials science community for making sustainable green environments. In particular, fabrication of usable nanogenerator attract the attention of many researchers because it can scavenge even the biomechanical energy inside the human body (such as heart beat, blood flow, muscle stretching, or eye blinking) by converging harvesting technology with implantable bio-devices. Herein, we describe procedure suitable for generating and printing a lead-free microstructured $BaTiO_3$ thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible $BaTiO_3$ thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of $BaTiO_3$ thin film nanogenerator and the integration of bio-eco-compatible ferroelectric materials may enable innovative opportunities for artificial skin and energy harvesting system.

  • PDF

Bio-inert Surface of Pluronic-immobilized Flask for Preservation of Hematopoietic Stem Cells

  • Higuchi, Akon;Aoki, Nobuo;Gomei, Yumiko;Matsuoka, Yuki
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.267-267
    • /
    • 2006
  • Human umbilical cord blood was stored at $4^{\circ}C$ in the Pluronic-immobilized flask as well as commercially available bio-inert flasks, and flow cytometric analysis of surface markers was performed on hematopoietic stem cells after cultivation. The number of cells expressing $CD34^{+}$ in umbilical cord blood on the Pluronic-immobilized flask was extremely higher than those obtained using other flasks. It is concluded that the flexible and hydrophilic segments of Pluronic conjugated on the flask surface are the reason for the effective preservation of hematopoietic stem cells in the Pluronic-immobilized flask.

  • PDF

Copying and Manipulating Nature: Innovation for Textile Materials

  • Rossbach, Volker;Patanathabutr, Pajaera;Wichitwechkarn, Jesdawan
    • Fibers and Polymers
    • /
    • 제4권1호
    • /
    • pp.8-14
    • /
    • 2003
  • This paper considers the potential impact of biological approaches such as bio-copying (biomimetics) and biomanipulating (e.g. genetic engineering) on future developments in the field of textiles and, in particular, fibres. If analytical tools for studying biological systems combined with those of materials science are further developed, and higher efficiency and reproducibility of genetic engineering technology can be achieved, the potential for the copying and manipulation of nature for textile innovations will be immense. The present state for both fields is described with examples such as touch and close fastener, structurally coloured fibres, the Lotus of lect (for bio-copying), as well as herbicide tolerant cotton, insecticide resistant cotton (Bt cotton), cotton polyester bicomponent fibres, genetically engineered silkworm and silk protein, and spider fibres. (for genetic engineering).

Inorganic Materials and Process for Bioresorbable Electronics

  • Seo, Min-Ho;Jo, Seongbin;Koo, Jahyun
    • Journal of Semiconductor Engineering
    • /
    • 제1권1호
    • /
    • pp.46-56
    • /
    • 2020
  • This article highlights new opportunities of inorganic semiconductor materials for bio-implantable electronics, as a subset of 'transient' technology defined by an ability to physically dissolve, chemically degrade, or disintegrate in a controlled manner. Concepts of foundational materials for this area of technology with historical background start with the dissolution chemistry and reaction kinetics associated with hydrolysis of nanoscale silicon surface as a function of temperature and pH level. The following section covers biocompatibility of silicon, including related other semiconductor materials. Recent transient demonstrations of components and device levels for bioresorbable implantation enable the future direction of the transient electronics, as temporary implanters and other medical devices that provide important diagnosis and precisely personalized therapies. A final section outlines recent bioresorbable applications for sensing various biophysical parameters, monitoring electrophysiological activities, and delivering therapeutic signals in a programmed manner.