• Title/Summary/Keyword: bio ethanol

Search Result 617, Processing Time 0.025 seconds

Effect of Vigna angularis Ethanol Extract on Papain-induced Arthritis in Mice (팥 에탄올 추출물의 Papain 유도 관절염 마우스에서의 항 골관절염 효과)

  • Jeoung, See Hwa;Kim, Seung Hyung;Kim, Hyun Kyu;Yun, Bo Ra;Lee, Hee Woong;Lim, Ju Hwan;Rho, Mun Chual;Kim, Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.5
    • /
    • pp.665-671
    • /
    • 2012
  • The purpose of this study is to examine the effect of Vigna angularis ethanol extract (VA-E) on papain induced arthritis in C57BL/10 mice. The C57BL/10 mice were injected with papain and oral administration of Vigna angularis ethanol extract (VA-E) at different doses (100 and 200 mg/kg) once a day for 42 days and compared with untreated mice. Histological examination and the measurement of inflammatory cytokine release were performed. The results showed that comparing with untreated mice, the treatment with Vigna angularis ethanol extract (VA-E) decreased the pathological changes of knee joint tissue. The level of inflammatory cytokine secreted from the tissues, such as IL-$1{\beta}$ (interleukin-$1{\beta}$), IL-6 (interleukin-6), TNF-${\alpha}$ (Tumor Necrosis Factor-${\alpha}$), were decreased. These results were confirmed by the quantification of cartilage volume using micro CT scanning. Consequently, Vigna angularis ethanol extract (VA-E) has a therapeutic potential in inflammatory joint diseases such as osteoarthritis.

A Study of Fuel Pump Durability on the Bio-ethanol for FFV(Flexible Fuel Vehicle) System (바이오에탄올 연료에 대한 FFV(Flexible Fuel Vehicle)용 연료펌프모터의 내구성에 관한 연구)

  • Kim, Chang-Soo;Kwak, Dong-Ho;Jung, Byung-Jun;Kim, Jong-Myung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.107-112
    • /
    • 2011
  • FFV(Flexible Fuel Vehicle) is the vehicle that can be used liberally from gasoline to E100(Ethanol 100%) for fuel. Recently, interest in the bio-fuel is increased by the environmental factors like exhaustion of the fossil fuel and ruduction of greenhouse gases. For the reason, adopting of FFV is activated in the world including North and South America. In general, bio-ethanol has highly corrosive substance in compare with gasoline. In the part of fuel system, corrosion can make a safety problem in case of fuel leakage and engine starting problem. So the fuel system of FFV have to be made of high corrosion-resistant materials. This study examined the effect of bio-ethanol on the durability properties according to component materials in FFV fuel pump motor and regulator using the High Temperature Fuel Circulation Test.

A Parametric Study on Ethanol Production from Xylose by Pichia stipitis

  • Lee Tae-Young;Kim Myoung-Dong;Kim Kyu-Yong;Park Kyungmoon;Ryu Yeon-Woo;Seo Jin-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.27-31
    • /
    • 2000
  • Characteristics of ethanol production by a xylose-fermenting yeast, Pichia stipitis Y-7124, were studied. The sugar consumption rate and specific growth rate were higher in the glucose-containing medium than in the xylose-containing medium. Specific activities of xylose reductase and xylitol dehydrogenase were higher in the medium with xylose than glucose, suggesting their induction by xylose. Maximum specific growth rate and ethanol yield were achieved at 30 g xylose/L concentration without formation of by-products such as xylitol and acetic acid whereas a maximum ethanol concentration was obtained at 130 g/L xylose. Adding a respiratory inhibitor, rotenone, increased a maximum ethanol concentration by $10\%$ compared with the control experiment. In order to evaluate the pattern of ethanol inhibition on specific growth rate, a kinetic model based on Luong's equations was applied. The relationship between ethanol concentration and specific growth rate was hyperbolic for glucose and parabolic for xylose. A maximum ethanol concentration at which cells did not grow was 33.6 g/L for glucose and 44.7 g/L for xylose.

  • PDF

Potential of Red Ginseng Marc for Ethanol Production as a Fermentation Medium (에탄올 발효 배지로서 홍삼박의 활용)

  • Kim, Dong Chung;In, Man-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.4
    • /
    • pp.245-247
    • /
    • 2013
  • The potential of the red ginseng marc (RGM) for the production of bio-ethanol using enzymatic hydrolysis and fermentation without any additional nutrients was investigated. Reducing sugar content in RGM treated with Viscozyme and Flavourzyme was 101.1 g/L and was much higher than that (7.2 g/L) in intact RGM. When enzymatically hydrolyzed red ginseng marc (ERGM) was fermented with commercially available dry yeast at $25^{\circ}C$ for 7 days, the final ethanol concentration reached 29.3 g/L with ethanol yield at 0.274 g of ethanol per 1 g of solubilized total sugar. Ethanol concentration and ethanol yield of ERGM were drastically increased over 1000% and 50%, respectively than those of RGM.

Production of Bio-ethanol from Agar using Saccharomyces cerevisiae (Saccharomyces cerevisiae 에 의한 Agar로부터 바이오 에탄올 생산)

  • Lee, Sung-Mok;Yu, Byung Jo;Kim, Young Min;Choi, Soo-Jeong;Ha, Jong-Myung;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.290-295
    • /
    • 2009
  • Red-algae agar, consisting of D-galactose and 3, 6-anhydro-L-galactose, is usable for bio-ethanol production if hydrolyzed to monomer unit. The objective of this study is to produce bio-ethanol from agar using the heat and acid-treatment. Bio-ethanol was produced by Saccharomyces cerevisiae KCCM1129 strains using agar-pretreatment. The optimal condition for reducing sugar conversion by agar was found to be 15 min reaction at a HCl concentration of 0.1 N and $120^{\circ}C$. The optimum concentration for maximum cell growth was 0.1 N NaCl (17.88 g/L). Over 0.1 N NaCl, the cell growth decreased to 6.78~10.76 g/L. At 16% agar concentration, the ethanol production obtained by optimum pretreatment was found to be 10.16 g/L.

An Experimental Study on Spray Characteristics of Directly Injected Bio-Ethanol-Gasoline Blended Fuel By Varying Fuel Temperature (직접분사식 바이오 에탄올-가솔린 혼합연료의 연료온도에 따른 분무 특성에 관한 실험적 연구)

  • Lee, Seangwook;Park, Giyoung;Kim, Jongmin;Park, Bongkyu
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.636-642
    • /
    • 2014
  • As environment problem became a worldwide issue, countries are tightening regulations regarding greenhouse gas reduction and improvement of air pollution problems. With these circumstances, one of the renewable energies produced from biomass is getting attention. Bio-ethanol, which is applicable to SI engine, showed a positive effect on the PFI (Port Fuel Injection) type. However, Ethanol has a problem in homogeneous mixture formation because it has high latent heat of vaporization characteristics and in the GDI (Gasoline Direct Injection) type, mixture formation is required quickly after fuel injection. Particularly, South Korea is one of the countries with great temperature variation among seasons. With this reason, South Korea supply fuel additive for smooth engine operation during winter. Therefore, experimental study and investigation about application possibility of blending fuel is necessary. This paper demonstrates the spray characteristics by using the CVC direct injection and setting the bio-ethanol blending fuel temperature close to the temperature during each seasons: -7, 25, $35^{\circ}C$. The diameter and the width of the CVC are 86mm and 39mm. High-pressure fuel supply system was used for target injection pressure. High-speed camera was used for spray visualization. The experiment was conducted by setting the injection pressure and ambient pressure according to each temperature of bio-ethanol blending fuel as a parameter. The result of spray visualization experiment demonstrates that as the temperature of the fuel is lower, the atomization quality is lower, and this increase spray penetration and make mixture formation difficult. Injection strategy according to fuel temperature and bio-ethanol blending rate is needed for improving characteristics.

Antioxidant Activities of Phenolic Compounds from Medicinal Plants (Hibiscus esculentus, Cirsium japonicum, Zizania latifolia and Kalopanax pictus) (약용식물(오크라, 엉컹퀴, 엄나무, 줄풀) 유래 페놀성 물질의 항산화 활성)

  • Choi, Jin-Young;Jo, Min-Kyeong;Goo, Young-Mi;Kim, Hyun-Kyung;Shin, Jin-Won;Kim, Dong-Yeong;Kim, Hye-Jin;Lee, Eun-Ho;Kim, Na-Hyun;Cho, Young-Je
    • Current Research on Agriculture and Life Sciences
    • /
    • v.33 no.2
    • /
    • pp.57-63
    • /
    • 2015
  • In this study, the antioxidant activity of water and ethanol extracts from Hibiscus esculentus, Cirsium japonicum, Zizania latifolia and Kalopanax pictus for functional food source were examined. The optimal conditions for phenolic compounds extraction from medicinal plants were at 50% ethanol with Hibiscus esculentus and Cirsium japonicum var. ussuriense, at 40% ethanol with Kalopanax pictus and at 60% ethanol with Zizania latifolia. The total phenolic contents from the extracts of medical plants were determined to be 2.72~34.15 mg/g in the water extracts and 2.83~34.23 mg/g in the ethanol extracts. The electron-donating abilities (EDA) of the water and ethanol extracts were both above 74% at the low concentration of $50{\mu}g/mL$. The ABTS radical-cation decolorization was above 88% at $100{\mu}g/mL$ concentration in all the extracts of various medicinal plants. The antioxidant protection factor (PF) in the water and ethanol extracts of the Cirsium japonicum var. ussuriense extracts was $1.73{\pm}0.02PF$ and $1.76{\pm}0.01PF$ at $50{\mu}g/mL$ concentration respectively, and was higher than those of the other medicinal-plant extracts. The TBARs inhibition rates of all the medicinal-plant extracts, were above 80% at the $50{\mu}g/mL$ concentration except Hibiscus esculentus. These results confirmed that the various oriental medicinal plants (Hibiscus esculentus, Cirsium japonicum var. ussuriense, Kalopanax pictus and Zizania latifolia) that were included in this study are useful anti-oxidant and functional-food resources.

Effects of ethanol-induced p42/44 MAPkinase activity on IGF system in primary cultured rat hepatocytes (흰쥐의 배양된 간세포에서 ethanol에 의해 유도된 p42/44 MAPkinase가 IGF system에 미치는 효과)

  • Lee, Sun-Mi;Kim, Jong-Hoon;Kang, Chang-Won
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.4
    • /
    • pp.315-322
    • /
    • 2006
  • Ethanol abuse is associated with liver injury, neurotoxicity, modulation of immune responses, and increased risk for cancer, whereas moderate ethanol consumption exerts protective effects against liver injury. However, the underlying signal transduction mechanisms of insulin-like growth factors (IGFs) which play an important regulatory role in various metabolism mechanisms are not well understood. We investigated the effects of ethanol-induced p42/44 activity on IGF-I secretion, IGF-I receptor and IGFBP-1 secretion using radioimmunoassay and western blotting in primary cultured rat hepatocytes. The p42/44 activity, IGF-I secretion and IGF-I receptor activity significantly accelerated compared to control at 10 and 30 min after 200 mM ethanol treatment, but then it became suppressed at 180 min. In contrast, IGFBP-1 secretion was inhibited compared to control at 30 min after 200 mM ethanol treatment, but increased at 180 min. The IGF-I secretion, IGF-I receptor and p42/44 activity at 30 min after 200 mM ethanol treatment accelerated with increasing ethanol concentration but IGFBP-1 secretion inhibited (p<0.05). The increased IGF-I secretion, inhibited IGFBP-1 secretion and IGF-IR activity by ethanol-induced temporal p42/44 activity at 30 min after ethanol treatment was blocked by treatment with PD98059. Alcohol dehydrogenase (ADH) inhibitor, 4-methylpyramazole blocked the changes of IGF-I secretion, IGFBP-1 secretion, and IGF-IR activity by ethanol-induced p42/44 activity at 30 and 180 min. Taken together, these results suggest that ethanol is involved in the modulation of IGF-I and IGFBP-1 secretion and IGF-IR activity by p42/44 activity in primary cultured rat hepatocytes. In addition, changing of p42/44 activity by ethanol was caused with ADH.

Effects of excessive dietary methionine on oxidative stress and dyslipidemia in chronic ethanol-treated rats

  • Kim, Seon-Young;Kim, Hyewon;Min, Hyesun
    • Nutrition Research and Practice
    • /
    • v.9 no.2
    • /
    • pp.144-149
    • /
    • 2015
  • BACKGROUND/OBJECTIVE: The aim of this study was to examine the effect of high dietary methionine (Met) consumption on plasma and hepatic oxidative stress and dyslipidemia in chronic ethanol fed rats. MATERIALS/METHODS: Male Wistar rats were fed control or ethanol-containing liquid diets supplemented without (E group) or with DL-Met at 0.6% (EM1 group) or 0.8% (EM2 group) for five weeks. Plasma aminothiols, lipids, malondialdehyde (MDA), alanine aminotransferase (ALT), and aspartate aminotransferase were measured. Hepatic folate, S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) were measured. RESULTS: DL-Met supplementation was found to increase plasma levels of homocysteine (Hcy), triglyceride (TG), total cholesterol (TC), and MDA compared to rats fed ethanol alone and decrease plasma ALT. However, DL-Met supplementation did not significantly change plasma levels of HDL-cholesterol, cysteine, cysteinylglycine, and glutathione. In addition, DL-Met supplementation increased hepatic levels of folate, SAM, SAH, and SAM:SAH ratio. Our data showed that DL-Met supplementation can increase plasma oxidative stress and atherogenic effects by elevating plasma Hcy, TG, and TC in ethanol-fed rats. CONCLUSION: The present results demonstrate that Met supplementation increases plasma oxidative stress and atherogenic effects by inducing dyslipidemia and hyperhomocysteinemia in ethanol-fed rats.

Beauty food activities of extracts from Pinus densiflora root (동송근(Pinus densiflora root) 추출물의 미용식품활성)

  • Lee, Eun-Ho;Park, Ki-Tae;Park, Hye-Jin;Jo, Jae-Bum;Lee, Jae-Eun;Lim, Su-Bin;Kim, Ye-Jin;Ahn, Dong-Hyun;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.2
    • /
    • pp.119-124
    • /
    • 2017
  • The extracted phenolic compounds from Pinus densiflora root were examined biological activities for beauty food. The tyrosinase inhibitory activity which was related to skin-whitening was observed. The tyrosinase inhibitory activity was confirmed to be 92% in ethanol extract at $50{\mu}g/mL$ phenolic. The elastase and collagenase inhibitory activity as anti-wrinkle effect were showed 61 and 78% in ethanol extract at $200{\mu}g/mL$ phenolic, respectively. Astringent effect of ethanol extract was showed to be 82% at $50{\mu}g/mL$ phenolic. Hyaluronidase inhibitory activity of ethanol extract as anti-inflammation effect was confirmed to be 94% of inhibition at $200{\mu}g/mL$ phenolic. These results demonstrated that isolated phenolic compounds from P. densiflora root could be expected to use as a functional cosmetic materials.