DOI QR코드

DOI QR Code

Effects of excessive dietary methionine on oxidative stress and dyslipidemia in chronic ethanol-treated rats

  • Kim, Seon-Young (Department of Food and Nutrition, College of Bio-Nano Science, Hannam University) ;
  • Kim, Hyewon (Department of Food and Nutrition, College of Bio-Nano Science, Hannam University) ;
  • Min, Hyesun (Department of Food and Nutrition, College of Bio-Nano Science, Hannam University)
  • Received : 2015.01.14
  • Accepted : 2015.03.19
  • Published : 2015.04.01

Abstract

BACKGROUND/OBJECTIVE: The aim of this study was to examine the effect of high dietary methionine (Met) consumption on plasma and hepatic oxidative stress and dyslipidemia in chronic ethanol fed rats. MATERIALS/METHODS: Male Wistar rats were fed control or ethanol-containing liquid diets supplemented without (E group) or with DL-Met at 0.6% (EM1 group) or 0.8% (EM2 group) for five weeks. Plasma aminothiols, lipids, malondialdehyde (MDA), alanine aminotransferase (ALT), and aspartate aminotransferase were measured. Hepatic folate, S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) were measured. RESULTS: DL-Met supplementation was found to increase plasma levels of homocysteine (Hcy), triglyceride (TG), total cholesterol (TC), and MDA compared to rats fed ethanol alone and decrease plasma ALT. However, DL-Met supplementation did not significantly change plasma levels of HDL-cholesterol, cysteine, cysteinylglycine, and glutathione. In addition, DL-Met supplementation increased hepatic levels of folate, SAM, SAH, and SAM:SAH ratio. Our data showed that DL-Met supplementation can increase plasma oxidative stress and atherogenic effects by elevating plasma Hcy, TG, and TC in ethanol-fed rats. CONCLUSION: The present results demonstrate that Met supplementation increases plasma oxidative stress and atherogenic effects by inducing dyslipidemia and hyperhomocysteinemia in ethanol-fed rats.

Keywords

References

  1. Barak AJ, Beckenhauer HC, Tuma DJ. Methionine synthase. a possible prime site of the ethanolic lesion in liver. Alcohol 2002;26:65-7.
  2. Halsted CH, Villanueva J, Chandler CJ, Stabler SP, Allen RH, Muskhelishvili L, James SJ, Poirier L. Ethanol feeding of micropigs alters methionine metabolism and increases hepatocellular apoptosis and proliferation. Hepatology 1996;23:497-505. https://doi.org/10.1002/hep.510230314
  3. Waly MI, Kharbanda KK, Deth RC. Ethanol lowers glutathione in rat liver and brain and inhibits methionine synthase in a cobalamindependent manner. Alcohol Clin Exp Res 2011;35:277-83. https://doi.org/10.1111/j.1530-0277.2010.01343.x
  4. Stipanuk MH. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 2004;24:539-77. https://doi.org/10.1146/annurev.nutr.24.012003.132418
  5. Selhub J. Homocysteine metabolism. Annu Rev Nutr 1999;19:217-46. https://doi.org/10.1146/annurev.nutr.19.1.217
  6. Brosnan JT, Brosnan ME. The sulfur-containing amino acids: an overview. J Nutr 2006;136:1636S-1640S. https://doi.org/10.1093/jn/136.6.1636S
  7. Wang H, Jiang X, Yang F, Gaubatz JW, Ma L, Magera MJ, Yang X, Berger PB, Durante W, Pownall HJ, Schafer AI. Hyperhomocysteinemia accelerates atherosclerosis in cystathionine beta-synthase and apolipoprotein E double knock-out mice with and without dietary perturbation. Blood 2003;101:3901-7. https://doi.org/10.1182/blood-2002-08-2606
  8. Finkelstein JD. Methionine metabolism in mammals. J Nutr Biochem 1990;1:228-37. https://doi.org/10.1016/0955-2863(90)90070-2
  9. Lieber CS, Casini A, DeCarli LM, Kim CI, Lowe N, Sasaki R, Leo MA. S-adenosyl-L-methionine attenuates alcohol-induced liver injury in the baboon. Hepatology 1990;11:165-72.
  10. Mato JM, Alvarez L, Ortiz P, Mingorance J, Duran C, Pajares MA. S-adenosyl-L-methionine synthetase and methionine metabolism deficiencies in cirrhosis. Adv Exp Med Biol 1994;368:113-7. https://doi.org/10.1007/978-1-4615-1989-8_11
  11. Bailey SM, Robinson G, Pinner A, Chamlee L, Ulasova E, Pompilius M, Page GP, Chhieng D, Jhala N, Landar A, Kharbanda KK, Ballinger S, Darley-Usmar V. S-adenosylmethionine prevents chronic alcoholinduced mitochondrial dysfunction in the rat liver. Am J Physiol Gastrointest Liver Physiol 2006;291:G857-67. https://doi.org/10.1152/ajpgi.00044.2006
  12. Lieber CS. S-adenosyl-L-methionine: its role in the treatment of liver disorders. Am J Clin Nutr 2002;76:1183S-1187S. https://doi.org/10.1093/ajcn/76.5.1183S
  13. Lu SC, Huang ZZ, Yang H, Mato JM, Avila MA, Tsukamoto H. Changes in methionine adenosyltransferase and S-adenosylmethionine homeostasis in alcoholic rat liver. Am J Physiol Gastrointest Liver Physiol 2000;279:G178-85. https://doi.org/10.1152/ajpgi.2000.279.1.G178
  14. Albano E. Alcohol, oxidative stress and free radical damage. Proc Nutr Soc 2006;65:278-90. https://doi.org/10.1079/PNS2006496
  15. Deneke SM. Thiol-based antioxidants. Curr Top Cell Regul 2000;36: 151-80.
  16. Munday R. Toxicity of thiols and disulphides: involvement of free-radical species. Free Radic Biol Med 1989;7:659-73. https://doi.org/10.1016/0891-5849(89)90147-0
  17. Finkelstein JD, Martin JJ. Methionine metabolism in mammals. Adaptation to methionine excess. J Biol Chem 1986;261:1582-7.
  18. Toborek M, Kopieczna-Grzebieniak E, Drozdz M, Wieczorek M. Increased lipid peroxidation and antioxidant activity in methionineinduced hepatitis in rabbits. Nutrition 1996;12:534-7. https://doi.org/10.1016/S0899-9007(96)00108-6
  19. Yalcinkaya S, Unlucerci Y, Uysal M. Methionine-supplemented diet augments hepatotoxicity and prooxidant status in chronically ethanol-treated rats. Exp Toxicol Pathol 2007;58:455-9. https://doi.org/10.1016/j.etp.2007.03.003
  20. Lieber CS, DeCarli LM. Animal models of chronic ethanol toxicity. Methods Enzymol 1994;233:585-94. https://doi.org/10.1016/S0076-6879(94)33061-1
  21. Nolin TD, McMenamin ME, Himmelfarb J. Simultaneous determination of total homocysteine, cysteine, cysteinylglycine, and glutathione in human plasma by high-performance liquid chromatography: application to studies of oxidative stress. J Chromatogr B Analyt Technol Biomed Life Sci 2007;852:554-61. https://doi.org/10.1016/j.jchromb.2007.02.024
  22. Wong SH, Knight JA, Hopfer SM, Zaharia O, Leach CN Jr, Sunderman FW Jr. Lipoperoxides in plasma as measured by liquid-chromatographic separation of malondialdehyde-thiobarbituric acid adduct. Clin Chem 1987;33:214-20.
  23. Wagner J, Claverie N, Danzin C. A rapid high-performance liquid chromatographic procedure for the simultaneous determination of methionine, ethionine, S-adenosylmethionine, S-adenosylethionine, and the natural polyamines in rat tissues. Anal Biochem 1984;140: 108-16. https://doi.org/10.1016/0003-2697(84)90140-4
  24. Tamura T. Microbiological assay of folates. In: Picciano MF, Stokstad EL, Gregory JF III, editors. Folic Acid Metabolism in Health and Disease. New York (NY): Wiley-Liss; 1990. p.121-37.
  25. Song Z, Zhou Z, Chen T, Hill D, Kang J, Barve S, McClain C. S-adenosylmethionine (SAMe) protects against acute alcohol induced hepatotoxicity in mice. J Nutr Biochem 2003;14:591-7. https://doi.org/10.1016/S0955-2863(03)00116-5
  26. Toue S, Kodama R, Amao M, Kawamata Y, Kimura T, Sakai R. Screening of toxicity biomarkers for methionine excess in rats. J Nutr 2006;136:1716S-1721S. https://doi.org/10.1093/jn/136.6.1716S
  27. Benevenga NJ, Harper AE. Alleviation of methionine and homocystine toxicity in the rat. J Nutr 1967;93:44-52. https://doi.org/10.1093/jn/93.1.44
  28. Zhang R, Ma J, Xia M, Zhu H, Ling W. Mild hyperhomocysteinemia induced by feeding rats diets rich in methionine or deficient in folate promotes early atherosclerotic inflammatory processes. J Nutr 2004;134:825-30. https://doi.org/10.1093/jn/134.4.825
  29. Yang CM, Carlson GP. Effects of ethanol on glutathione conjugation in rat liver and lung. Biochem Pharmacol 1991;41:923-9. https://doi.org/10.1016/0006-2952(91)90197-D
  30. Aykac G, Uysal M, Yalcin AS, Kocak-Toker N, Sivas A, Oz H. The effect of chronic ethanol ingestion on hepatic lipid peroxide, glutathione, glutathione peroxidase and glutathione transferase in rats. Toxicology 1985;36:71-6. https://doi.org/10.1016/0300-483X(85)90008-3
  31. Meister A. Glutathione metabolism and its selective modification. J Biol Chem 1988;263:17205-8.
  32. Barak AJ, Beckenhauer HC, Tuma DJ. S-adenosylmethionine generation and prevention of alcoholic fatty liver by betaine. Alcohol 1994;11:501-3. https://doi.org/10.1016/0741-8329(94)90075-2
  33. Avila MA, Garcia-Trevijano ER, Martinez-Chantar ML, Latasa MU, Perez-Mato I, Martinez-Cruz LA, del Pino MM, Corrales FJ, Mato JM. S-Adenosylmethionine revisited: its essential role in the regulation of liver function. Alcohol 2002;27:163-7. https://doi.org/10.1016/S0741-8329(02)00228-8
  34. Cederbaum AI. Hepatoprotective effects of S-adenosyl-L-methionine against alcohol- and cytochrome P450 2E1-induced liver injury. World J Gastroenterol 2010;16:1366-76. https://doi.org/10.3748/wjg.v16.i11.1366
  35. Garcia-Ruiz C, Morales A, Colell A, Ballesta A, Rodes J, Kaplowitz N, Fernandez-Checa JC. Feeding S-adenosyl-L-methionine attenuates both ethanol-induced depletion of mitochondrial glutathione and mitochondrial dysfunction in periportal and perivenous rat hepatocytes. Hepatology 1995;21:207-14.
  36. Colell A, Garcia-Ruiz C, Morales A, Ballesta A, Ookhtens M, Rodes J, Kaplowitz N, Fernandez-Checa JC. Transport of reduced glutathione in hepatic mitochondria and mitoplasts from ethanol-treated rats: effect of membrane physical properties and S-adenosyl-Lmethionine. Hepatology 1997;26:699-708.
  37. Lapenna D, de Gioia S, Ciofani G, Mezzetti A, Ucchino S, Calafiore AM, Napolitano AM, Di Ilio C, Cuccurullo F. Glutathione-related antioxidant defenses in human atherosclerotic plaques. Circulation 1998;97:1930-4. https://doi.org/10.1161/01.CIR.97.19.1930
  38. Kugiyama K, Ohgushi M, Motoyama T, Hirashima O, Soejima H, Misumi K, Yoshimura M, Ogawa H, Sugiyama S, Yasue H. Intracoronary infusion of reduced glutathione improves endothelial vasomotor response to acetylcholine in human coronary circulation. Circulation 1998;97:2299-301. https://doi.org/10.1161/01.CIR.97.23.2299

Cited by

  1. Effects of Methionine on the Immune Function in Animals vol.09, pp.05, 2017, https://doi.org/10.4236/health.2017.95061
  2. Short-term dietary methionine supplementation affects one-carbon metabolism and DNA methylation in the mouse gut and leads to altered microbiome profiles, barrier function, gene expression and histomorphology vol.12, pp.1, 2017, https://doi.org/10.1186/s12263-017-0576-0
  3. Subchronic methionine load induces oxidative stress and provokes biochemical and histological changes in the rat liver tissue vol.448, pp.1-2, 2018, https://doi.org/10.1007/s11010-018-3311-2
  4. Dietary methionine restriction regulated energy and protein homeostasis by improving thyroid function in high fat diet mice vol.9, pp.7, 2018, https://doi.org/10.1039/C8FO00685G
  5. Downregulation of miR-150 Expression by DNA Hypermethylation Is Associated with High 2-Hydroxy-(4-methylthio)butanoic Acid-Induced Hepatic Cholesterol Accumulation in Nursery Piglets vol.64, pp.40, 2016, https://doi.org/10.1021/acs.jafc.6b03615
  6. Antioxidant properties of Komagataeibacter hansenii CGMCC 3917 and its ameliorative effects on alcohol-induced liver injury in mice vol.17, pp.1, 2015, https://doi.org/10.1080/19476337.2019.1584647
  7. Impact of Supplementary Amino Acids, Micronutrients, and Overall Diet on Glutathione Homeostasis vol.11, pp.5, 2015, https://doi.org/10.3390/nu11051056
  8. Dietary protein and amino acid restriction: Roles in metabolic health and aging-related diseases vol.178, pp.None, 2022, https://doi.org/10.1016/j.freeradbiomed.2021.12.009