• Title/Summary/Keyword: binocular

Search Result 323, Processing Time 0.028 seconds

Assessment of Accommodative Facility in General Binocular Dysfunctions (양안시이상에 따른 조절용이의 평가)

  • Park, Sang-Chul
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.3
    • /
    • pp.51-57
    • /
    • 2009
  • Purpose: The purpose of this study was to determine if monocular and binocular accommodative facility tests would be useful in diagnosing general binocular dysfunctions. Methods: 95 symptomatic children, who were selected from comprehensive vision tests, were classified into four groups (29 subjects with accommodative dysfunctions, 28 subjects with vergence dysfunctions, 25 subjects with combined accommodative and vergence dysfunctions, 13 subjects with normal binocular functions). Monocular and binocular accommodative facility was measured with ${\pm}$2.00 D flipper lenses. Results: Statistical analysis revealed that binocular accommodative facility measurement was significantly lower than monocular accommodative measurement in the vergence dysfunction group (p<0.01). However, there were no differences between monocular and binocular accommodative facility measurements in the group of accommodative or combined accommodative and vergence dysfunction (p>0.05). In addition, subjects with general binocular dysfunctions performed significantly poorer than subjects with normal binocular function on monocular and binocular accommodative facility (p<0.000). Conclusions: As a result of this study, monocular and binocular accommodative facility test, which could differentiate dysfunction from normal as well as between dysfunctions, indicated useful means for diagnosis of general binocular dysfunctions.

  • PDF

Development of a Calculating Program for the Prism Power Influencing to Binocular Vision according to Shift of Binocular Visual Points in the Distance Vision Spectacles (원용안경의 양안 주시점 이동에 따른 양안시에 미치는 프리즘 굴절력 산출 프로그램 개발)

  • Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.3
    • /
    • pp.257-262
    • /
    • 2010
  • Purpose: Developing a calculating program for the prism power which influenced the binocular vision according to shifts of binocular visual points in the distance vision spectacles. Methods: By using the Delphi 6.0 programming language, we developed a calculating program of the relative binocular prism power according to the movements of binocular visual points in the distance vision spectacles, which was calculated by dragging the mouse along the traces of binocular visual points on the computer window. Results: We developed a calculating program for the relative binocular prism power according to the movements of binocular visual points in the distance vision spectacles. The user of the program could confirm the trace of visual points by allowing them to display the trace of binocular visual points on the computer screen with a mouse button. An application on confirming the variation of prism power by graphs in the program also allowed the user to use the program more conveniently. Conclusions: By using the developed program, the user could easily calculate the relative binocular prism power according to shifts of binocular visual points in the distance vision spectacles. We also found that the developed program helped the user to receive a lot of assistance in analyzing the asthenopia.

Determination of The Optimal Binocular Parallax Inducing The Least 3D Visual Fatigue

  • Li, Hyung-Chul O.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1092-1094
    • /
    • 2009
  • The purpose of the research was to figure out the optimal binocular parallax inducing the least 3D visual fatigue. Subjective 3D visual fatigue was measured while the revolution depth and the average depth of an object were manipulated. The optimal binocular parallax was figured out by using data fitting method.

  • PDF

The Effect of Accommodation Cue Manipulation at Stereoscopic Display on Binocular Fusion (양안식 디스플레이에 제시되는 자극의 조절단서 조작이 양안융합에 미치는 영향)

  • Park, Jong-Jin;Kim, Shinwoo;Li, Hyung-Chul O.
    • Journal of Broadcast Engineering
    • /
    • v.27 no.4
    • /
    • pp.569-580
    • /
    • 2022
  • In this study, we investigated the effect of peripheral blur on binocular fusion to resolve binocular fusion failure which is one of the 3D visual fatigues in the perspective of human visual system. With stimulus having discrete disparity change, binocular fusion failure rate for target stimulus having crossed and uncrossed disparity decreased. And target stimulus having continuous disparity also required relatively larger binocular disparity when peripheral blur was presented with target stimulus rather than when peripheral blur was not presented. These results imply that peripheral blur facilitated binocular fusion in the situation of binocular disparity change, and suggest that considering the characteristics of human three-dimensional visual systems, manipulating 3D contents can improve visual discomfort caused by binocular displays at low costs.

Case Study of Vision Therapy (시기능 교정의 임상사례)

  • Park, Hyun-Ju
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • I performed the refraction and binocular test for study of binocular abnormalities. The problems of the accommodation and binocular on subjects was need to the correction of the refractive error. also the subjects was need to a specific treatment for each of the problems. On two patients who had convergence excess, The full corrections of eyeglasses or (+)ADD for near vision were prescribed and the subjects trained for 4 weeks. After 4 weeks, the unconvenience of near vision have more decrease, and the objective test have good results. On clinical, If the optical correction and vision therapy was applied the treatment for binocular abnormalities. The continuous research of vision training in binocular abnormalities will be good results for treatment of several binocular abnormalities in the future.

  • PDF

The Role of Binocular Disparity at Color-Motion Binding (색채-운동 속성 결합에서의 양안시차의 역할)

  • Li, Hyung-Chul O.
    • Korean Journal of Cognitive Science
    • /
    • v.18 no.1
    • /
    • pp.69-90
    • /
    • 2007
  • The purpose of the present research was to examine whether the visual system importantly use binocular disparity information in color-motion binding. Wu, Kanai and Shimojo (2004) reported an illusory color-motion binding which was observed in the peripheral visual area when observers fixated on the central area of visual stimulus. We have found that illusory rotor-motion binding was not observed at the situation where binocular disparity was available but was where it was not available. These results imply that the visual system uses binocular disparity information when it binds rotor and motion and that the binding process occurs after binocular disparity information is processed.

  • PDF

Precision Evaluation of Three-dimensional Feature Points Measurement by Binocular Vision

  • Xu, Guan;Li, Xiaotao;Su, Jian;Pan, Hongda;Tian, Guangdong
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.30-37
    • /
    • 2011
  • Binocular-pair images obtained from two cameras can be used to calculate the three-dimensional (3D) world coordinate of a feature point. However, to apply this method, measurement accuracy of binocular vision depends on some structure factors. This paper presents an experimental study of measurement distance, baseline distance, and baseline direction. Their effects on camera reconstruction accuracy are investigated. The testing set for the binocular model consists of a series of feature points in stereo-pair images and corresponding 3D world coordinates. This paper discusses a method to increase the baseline distance of two cameras for enhancing the accuracy of a binocular vision system. Moreover, there is an inflexion point of the value and distribution of measurement errors when the baseline distance is increased. The accuracy benefit from increasing the baseline distance is not obvious, since the baseline distance exceeds 1000 mm in this experiment. Furthermore, it is observed that the direction errors deduced from the set-up are lower when the main measurement direction is similar to the baseline direction.

Three Degrees of Freedom Global Calibration Method for Measurement Systems with Binocular Vision

  • Xu, Guan;Zhang, Xinyuan;Li, Xiaotao;Su, Jian;Lu, Xue;Liu, Huanping;Hao, Zhaobing
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.107-117
    • /
    • 2016
  • We develop a new method to globally calibrate the feature points that are derived from the binocular systems at different positions. A three-DOF (degree of freedom) global calibration system is established to move and rotate the 3D calibration board to an arbitrary position. A three-DOF global calibration model is constructed for the binocular systems at different positions. The three-DOF calibration model unifies the 3D coordinates of the feature points from different binocular systems into a unique world coordinate system that is determined by the initial position of the calibration board. Experiments are conducted on the binocular systems at the coaxial and diagonal positions. The experimental root-mean-square errors between the true and reconstructed 3D coordinates of the feature points are 0.573 mm, 0.520 mm and 0.528 mm at the coaxial positions. The experimental root-mean-square errors between the true and reconstructed 3D coordinates of the feature points are 0.495 mm, 0.556 mm and 0.627 mm at the diagonal positions. This method provides a global and accurate calibration to unity the measurement points of different binocular vision systems into the same world coordinate system.

An Analysis of Recovery Rate and a Change of Depth Recognition After Watching 3D Videos (3D 영상 시청 시 콘텐츠에 따른 깊이 인지 변화와 회복도 분석)

  • Kim, Yong-Woo;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.1
    • /
    • pp.88-96
    • /
    • 2015
  • The recent increase in the production of 3D contents allowed viewers to experience various 3D contents. However, some of the viewers did not experience 3D depth well. Several researches were done in past to measure viewers' 3D depth perception, but these researches were done with certain limitations. In this paper, we measured viewers' 3D depth perception and recovery rate in relation with the changes in binocular disparities, saturation, and brightness values after subjects' watching 2D/3D contents. The results showed that when viewers watched the 3D content with positive binocular disparities for 42 minutes, viewers felt that the object seemed to have moved further forward than it was before; with 3D content with negative binocular disparities, viewers felt that the object seemed to be moved backwards. We found that the locational differences of the object in positive disparities were greater than those in the negative binocular disparities. The recovery rate was computed by comparing two measured values of before and after watching 3D contents for 30 minutes. On average, after 30-minute break, viewers showed roughly 50 % of recovery rate.

Moving Target Tracking using Vision System for an Omni-directional Wheel Robot (전방향 구동 로봇에서의 비젼을 이용한 이동 물체의 추적)

  • Kim, San;Kim, Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1053-1061
    • /
    • 2008
  • In this paper, a moving target tracking using a binocular vision for an omni-directional mobile robot is addressed. In the binocular vision, three dimensional information on the target is extracted by vision processes including calibration, image correspondence, and 3D reconstruction. The robot controller is constituted with SPI(serial peripheral interface) to communicate effectively between robot master controller and wheel controllers.