Coordination among users is an inevitable but time-consuming operation in wireless networks. It severely limit the system performance when the data rate is high. We present FC-MAC, a novel MAC protocol that can complete a contention within one contention slot over a joint frequency-code domain. When a node takes part in the contention, it generates randomly a contention vector (CV), which is a binary sequence of length equal to the number of available orthogonal frequency division multiplexing (OFDM) subcarriers. In FC-MAC, different user is assigned with a distinct signature (i.e., PN sequence). A node sends the signature at specific subcarriers and uses the sequence of the ON/OFF states of all subcarriers to indicate the chosen CV. Meanwhile, every node uses the redundant antennas to detect the CVs of other nodes. The node with the minimum CV becomes the winner. The experimental results show that, the collision probability of FC-MAC is as low as 0.05% when the network has 100 nodes. In comparison with IEEE 802.11, contention time is reduced by 50-80% and the throughput gain is up to 200%.
ARPA(Automatic Radar Plotting Aid) is a device to calculate CPA(closest point of approach)/TCPA(time of CPA), true course and speed of targets by vector operation of relative courses and speeds. The purpose of this study is to develop target acquisition and tracking technology for ARPA Radar implementation. After examining the previous studies, applicable algorithms and technologies were developed to be combined and basic ARPA functions were developed as a result. As for main research contents, the sequential image processing technology such as combination of grayscale conversion, gaussian smoothing, binary image conversion and labeling was deviced to achieve a proper target acquisition, and the NNS(Nearest Neighbor Search) algorithm was appllied to identify which target came from the previous image and finally Kalman Filter was used to calculate true course and speed of targets as an analysis of target behavior. Also all technologies stated above were implemented as a SW program and installed onboard, and verified the basic ARPA functions to be operable in practical use through onboard test.
In this paper, we suggest a method of robust watermarking for protection of multimedia data using the wavelet transform and artificial neural network. for the purpose of implementation, we decompose a original image using wavelet transform at level 3. After we classify transformed coefficients of other subbands using neural network except fur the lowest subband LL$_3$, we apply a calculated threshold about chosen cluster as the biggest. We used binary logo watermarks to make sure that it is true or not on behalf of the Gaussian Random Vector. Besides, we tested a method of dual watermark insertion and extraction. For the purpose of implementation, we decompose a original image using wavelet transform at level 3. After we classify transformed coefficients of other subbands using neural network except for the lowest subband LL$_3$, we apply a above mentioned watermark insert method. In the experimental results, we found that it has a good quality and robust about many attacks.
Agrobacterium tumefaciens LBA 4404 harboring binary vector pBI 121 was used for genetic transformation of lettuce(Lactuca Sativa L.). Optimal shoot regeneration from cotyledon explants was obtained in MS medium supplemented with 0.1mg/L NAA and 1.0 mg/L 2ip. In this condition, cotyledon explants were cocultivated with A, tumefaciens for 2 days, and then transferred to selection medium supplemented with 50 mg/L kanamycin and 500 mg/L carbenicillin. These explants were subsequently subcultured every 2 weeks on shoot induction medium. PCR analysis indicated that the GUS gene was stably integrated into the nuclear genome of lettuce. Histochemical analysis based on the enzymatic activity of the CUS protein showed that GUS activity was associated with vascular tissue in leaves and roots. Progenies of Ro plants demonstrated a linked monogenic segregation for GUS gene.
Transgenic lettuce plants were successfully obtained from hypocotyl explants inoculated with Agrobacterium tumefaciens, which harbored a binary vector plasmid with Bcl-2 gene, related to apoptosis. After culture and selection on MS medium a number of kanamycin-resistant plantlets were regenerated. Polymerase chain reaction, Southern blot analysis and Northern blot analysis were used to identify and characterize the transgenic plants with the integrated Bcl-2 gene. Over 100 transgenic plants have been established in soil and flowered in the greenhouse. T1 progeny of 100 transgenic lettuce inbred lines were inoculated with Sclerotinia sclerotiorum. Expression of the Bcl-2 peptide in transgenic lettuce plants provides high levels of field resistance against Sclerotinia sclerotiorum, causal agent of the agronomically important fungal disease of lettuce.
Agrobacterium tumefaciens-mediated cotyledonary-node explants transformation was used to produce transgenic cucumber. Cotyledonary-node explants of cucumber (Cucumis sativus L. cv., Eunsung) were co-cultivated with Agrobacterium strains (EHA101) containing the binary vector (pPZP211) carrying with CaMV 35S promoter-nptII gene as selectable marker gene and 35S promoter-DQ gene (unpublished data) as target gene. The average of transformation efficiency (4.01%) was obtained from three times experiments and the maximum efficiency was shown at 5.97%. A total of 9 putative transgenic plants resistant to paromomycin were produced from the cultures of cotyledonary-node explants on selection medium. Among them, 6 transgenic plants showed that the nptII gene integrated into each genome of cucumber by Southern blot analysis.
Journal of Korea Society of Industrial Information Systems
/
v.4
no.1
/
pp.68-76
/
1999
The intuitive understanding of the dynamic pattern generation in asymmetric networks may be useful for developing models of dynamic information processing. In this paper, dynamic behavior of the ring connection neural network in which each neuron is only to its nearest neurons with binary synaptic weights of ±1, has been inconnected vestigated Simulation results show that dynamic behavior of the network can be classified into only three categories: fixed points, limit cycles with basin and limit cycles with no basin. Furthermore, the number and the type of limit cycles generated by the networks have been derived through analytical method. The sufficient conditions for a state vector of n-neuron network to produce a limit cycle of n- or 2n-period are also given The results show that the estimated number of limit cycle is an exponential function of n. On the basis of this study, cyclic connection neural network may be capable of storing a large number of dynamic information.
An abdominal aortic aneurysm occurs most commonly in older individuals (between 65 and 75), and more in men and smokers. The most important complication of an abdominal aortic aneurysm is rupture, which is most often a fatal event. An abdominal aortic aneurysm weakens the walls of the blood vessel, leaving it vulnerable to bursting open, or rupturing, and spilling large amounts of blood into the abdominal cavity. surface modeling is very useful to surgery for quantitative analysis of abdominal aortic aneurysm. the 3D representation and surface modeling an abdominal aortic aneurysm structure taken from Multi Detector Computed Tomography. The construction of the 3D model is generally carried out by staking the contours obtained from 2D segmentation of each CT slice, so the quality of the 3D model strongly defends on the precision of segmentation process. In this work we present deformable model algorithm. deformable model is an energy-minimizing spline guided by external constraint force. External force which we call Gradient Vector Flow, is computed as a diffusion of a gradient vectors of gray level or binary edge map derived from the image. Finally, we have used snakes successfully for abdominal aortic aneurysm segmentation the performance of snake was visually and quantitatively validated by experts.
Jeong, Min-Hye;Kim, Jung A.;Kang, Seogchan;Choi, Eu Ddeum;Kim, Youngmin;Lee, Yerim;Jeon, Mi Jin;Yu, Nan Hee;Park, Ae Ran;Kim, Jin-Cheol;Kim, Soonok;Park, Sook-Young
Mycobiology
/
v.49
no.5
/
pp.491-497
/
2021
An endolichenic fungus Xylaria grammica EL000614 produces grammicin, a potent nematicidal pyrone derivative that can serve as a new control option for root-knot nematodes. We optimized an Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for X. grammica to support genetic studies. Transformants were successfully generated after co-cultivation of homogenized young mycelia of X. grammica with A. tumefaciens strain AGL-1 carrying a binary vector that contains the bacterial hygromycin B phosphotransferase (hph) gene and the eGFP gene in T-DNA. The resulting transformants were mitotically stable, and PCR analysis showed the integratin of both genes in the genome of transformants. Expression of eGFP was confirmed via fluorescence microscopy. Southern analysis showed that 131 (78.9%) out of 166 transformants contained a single T-DNA insertion. Crucial factors for producing predominantly single T-DNA transformants include 48 h of co-cultivation, pretreatment of A. tumefaciens cells with acetosyringone before co-cultivation, and using freshly prepared mycelia. The established ATMT protocol offers an efficient tool for random insertional mutagenesis and gene transfer in studying the biology and ecology of X. grammica.
The purpose of this study was to evaluate the performance of deep neural network model in order to determine whether there is a risk factor for coronary artery disease based on the cardiac variation parameter. The study used unidentifiable 297 data to evaluate the performance of the model. Input data consists of heart rate parameters, which are SDNN (standard deviation of the N-N intervals), PSI (physical stress index), TP (total power), VLF (very low frequency), LF (low frequency), HF (high frequency), RMSSD (root mean square of successive difference) APEN (approximate entropy) and SRD (successive R-R interval difference), the age group and sex. Output data are divided into normal and patient groups, and the patient group consists of those diagnosed with diabetes, high blood pressure, and hyperlipidemia among the various risk factors that can cause coronary artery disease. Based on this, a binary classification model was applied using Deep Neural Network of deep learning techniques to classify normal and patient groups efficiently. To evaluate the effectiveness of the model used in this study, Kernel SVM (support vector machine), one of the classification models in machine learning, was compared and evaluated using same data. The results showed that the accuracy of the proposed deep neural network was train set 91.79% and test set 85.56% and the specificity was 87.04% and the sensitivity was 83.33% from the point of diagnosis. These results suggest that deep learning is more efficient when classifying these medical data because the train set accuracy in the deep neural network was 7.73% higher than the comparative model Kernel SVM.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.