• Title/Summary/Keyword: binary star

Search Result 161, Processing Time 0.022 seconds

CCD PHOTOMETRY OF W UMa TYPE BINARY TY UMa (접촉형 쌍성의 진화 검증을 위한 TY UMa의 CCD 측광관측)

  • 강영운;황창덕;이희원;김천휘
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.55-62
    • /
    • 2001
  • We present VRI CCD photometry of W UMa type binary TY UMa. The light curves show that the secondary minimum is deeper than the primary minimum and the maximum I ($0.^{p}25$)is $0.^{m}023$ brighter than the maximum II ($0.^{p}75$). The V light curve has been analyzed and the photometric solutions have been determined by the method of Wilson & Devinney differential correction. We adopted the spot model to explain the asymetric light curve.

  • PDF

PERIOD VARIATION STUDY OF THE NEGLECTED ALGOL ECLIPSING BINARY SYSTEM V346 CYGNIUS

  • Hanna, Magdy
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.3
    • /
    • pp.99-104
    • /
    • 2014
  • We present the rst period variation study for the Algol eclipsing binary V346 Cyg by constructing the (O-C) residual diagram using all the available precise minima times. We conclude that the period variation can be explained by a sine-like variation due to the presence of a third body orbiting the binary in about $68.89{\pm}4.69$ years, together with a long-term orbital period decrease ($dP/dt=-1.23{\times}10^{-7}day/yr$) that can be interpreted to be due to slow mass loss from the ${\delta}$-Scuti primary component. The sinusoidal variation may also be explained by using the the Applegate (1992) mechanism involving cyclic magnetic activity due to star-spots on the secondary component. The present preliminary solution needs more precise photometric observations to be confirmed.

EVOLUTION OF ORBIT AND ROTATION OF A PSEUDO-SYNCHRONOUS BINARY SYSTEM ON THE MAIN SEQUENCE

  • Li, Lin-Sen
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.1
    • /
    • pp.1-4
    • /
    • 2018
  • We study the pseudo-synchronous orbital motion of a binary system on the main sequence. The equations of the pseudo-synchronous orbit are derived up to $O(e^4)$ where e is the eccentricy of the orbit. We integrate the equations to present their solutions. The theoretical results are applied to the evolution of the orbit and spin of the binary star Y Cygni, which has a current eccentricity of $e_0\;=\;0.142$. We tabulate our numerical results for the evolution of the orbit and spin per century. The numerical results for the semi-major axes and rotational angular velocities in the evolutional time scales of three stages (synchronization, circularization, and collapse time scale) are also tabulated. Synchronization is achieved in about $5{\times}10^3\;years$ followed by circularization lasting about $1{\times}10^5\;years$ before decaying in $2{\times}10^5\;years$.

Monitoring Observations of Active White Dwarf Binary Systems

  • Lee, Hee-Won;Choi, Bo-Eun;Im, Myungshin;Lim, Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.60.3-60.3
    • /
    • 2019
  • Binary systems of a white dwarf showing mass transfer activities are classified into cataclysmic variables and symbiotic stars. In the case of cataclysmic variables, the companion is usually a late type main sequence star filling its Roche lobe, where material is transferred through the inner Lagrangian point to form an accretion disk around the white dwarf. The disk becomes unstable and highly viscous when the surface density exceeds the critical density, leading to dwarf nova outbursts. In contrast, symbiotic stars are wide binary systems having a giant as the mass donor. Some fraction of giant stellar wind is accreted to the white dwarf giving rise to various symbiotic activities. In particular, half of symbiotics show Raman O VI at 6830 and 7088, which are important spectroscopic probe of mass transfer process. Monitoring observations using 1 m class telescopes will produce valuable information regarding the mass loss and mass transfer to white dwarf stars, shedding much light on the last stage of stellar evolution of low and intermediate mass stars.

  • PDF

PHOTOMETRIC PROPERTIES OF FOUR NEW VARIABLE STARS IN THE VICINITY OF BR CAM

  • KIM S.-L.;LEE C.-D.;LEE J. W.;LEE J. A.;KANG Y.B.;KOO J.-R.;VAUCLAIR G.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.143-149
    • /
    • 2004
  • We present photometric results for four new variable stars discovered in the vicinity of the ZZ Ceti-type pulsating white dwarf BR Cam. Observations were performed on 5 nights in November 2003 using the 1.8m telescope at Bohyunsan Optical Astronomy Observatory with no filter, on 3 nights in December 2003 using the 0.61m telescope at Sobaeksan Optical Astronomy Observatory with V, I filters, and on 3 nights in October 2004 using the 1.0m telescope at Mt. Lemmon Optical Astronomy Observatory with V, I filters. We estimated their periods from the phase-match technique for one eclipsing binary and the multiple frequency analysis for three pulsating stars. By considering the light curve shape, period and amplitude difference between two passbands, we classified the objects by their variability types as follows: V1 (USNO-A2.0 1425-05691757) is a W UMa-type eclipsing binary with an orbital period of $0^d.4641$; V2 (USNO-A2.0 1425-05703335) is a multi-periodic $\delta$ Set-type pulsating star with a dominant period of $0^d.0649$; V3 (USNO-A2.0 1425-05699659) is also a $\delta$ Set-type pulsating star with a period of $0^d.1408$; and V 4 (USNO-A2.0 1425-05707705) is a RR Lyr-type pulsating star with a period of $0^d.2643$.

Absolute Dimension and Pulsational Characteristics of the Eclipsing Binary EW Boo with a δ Sct Pulsator

  • Kim, Hye-Young;Hong, Kyeongsoo;Kim, Chun-Hwey;Lee, Jae Woo;Jeong, Min-Ji;Park, Jang-Ho;Song, Mi-Hwa
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.34.4-35
    • /
    • 2021
  • We present the TESS photometry and our high-resolution spectra of the semi-detached Algol EW Boo. For an orbital period study, we collected all available times of minima including ours for the last 30 years. It is found that the eclipse timing variation of the system can be represented by a periodic oscillation of 18.5±1.0 yr plus a secular period increase with a rate of [dP/dt]orb=-6(±3)×10-8 d yr-1. From our observed spectra, the effective temperature of the primary star was determined to be Teff,1=8560±118 K. From a simultaneous analysis of the TESS light and our double-lined radial velocity curves, the absolute masses, radii, and luminosities are M1=2.30±0.07M, M2=0.38±0.01M, R1=1.92±0.02 R, R2=1.27±0.01 R, L1=1.92±0.02 L, and L2=0.752±0.007 L, respectively. Multiple frequency analyses were carried out for the light residuals after subtracting the binary star model. We detected a total of 75 frequencies in the region of 16.50-104.8 day-1. Our results demonstrate that the more hotter primary star of EW Boo is a δ Sct pulsator by considering its position in the δ Scuti region of the Cepheid instability strip and pulsational characteristics.

  • PDF

The First Photometric Study of the Neglected Contact Binary GX Aurigae

  • Park, Jang-Ho;Lee, Jae Woo;Kim, Chun-Hwey
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.41.3-42
    • /
    • 2016
  • New CCD photometric observations of GX Aur have been made between 2004 and 2015. Our light curves are the first ever compiled and display the variable O'Connell effect. The light variations are satisfactorily modeled by including time-varying cool-spots on the component stars. Our light curve synthesis indicates that the eclipsing pair is an A-type contact binary with parameters of i = 81.1 deg, ${\Delta}T=36K$, q = 0.950 and f = 46%. Including our 25 timing measurements, a total of 83 times of minimum light spanning about 66 yr were used for a period study. It was found that the orbital period of GX Aur has varied due to two periodic oscillations superposed on an upward-opening parabolic variation. The long-term period increase rate is deduced as $+9.636{\times}10^{-10}d\;yr^{-1}$, which can be produced as a mass transfer from the secondary star to the primary at a rate of $3.136{\times}10^{-6}M_{\odot}\;yr^{-1}$, among the largest rates for contact systems. The periods and semi-amplitudes of the two periodic variations are about $P_3=8.7yr$ and $P_4=21.2yr$, and $K_3=0.011d$ and $K_4=0.017d$, respectively. The most reasonable explanation for both cycles is a pair of light-travel-time effects driven by the possible existence of an unseen third and fourth components with projected masses of $M_3=0.91M_{\odot}$ and $M_4=1.09M_{\odot}$ in eccentric orbits of $e_3=0.13$ and $e_4=0.73$. Because no third light was detected in the light curve synthesis, each circumbinary object could be a compact star or a binary itself.

  • PDF

CHEMICAL ABUNDANCE PATTERNS FOR SHARP-LINED STARS

  • YUSHCHENKO ALEXANDER;GOPKA VERA;KIM CHULHEE;KHOKHLOVA VERA;SHAYRINA ANGELINA;MUSAEV FAIG;GALAZUTDINOV GAZINUR;PAYLENKO YAKOY;MISHENINA TAMARA;POLOSUKHINA NINA;NORTH PITER
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.4
    • /
    • pp.209-220
    • /
    • 2002
  • In order to increase the completeness of the investigations of stellar abundances, we can use spectrum synthesis method, new atomic data and observation of stellar spectra with resolution comparable to solar spectral atlases. We made a brief review of main problems of these three ways. We present new results of abundance determinations in the atmospheres of four stars. The first is the implementation of new atomic data to well known Przybylski's star. We show that the number of spectral lines, which can be identificated in the spectrum of this star, can be significantly higher. The second example is the investigation of $\zeta$ Cyg. We found the abundances of 51 elements in the atmosphere of this mild barium star. The third example is halo star HD221170. Our preliminary abundance pattern consists of 42 elements. The heaviest elements in this pattern are U and Th. The last star is the spectroscopic binary HD153720. The number of elements investigated in the spectra of components of this star is not large, but the results show that the components are Am-stars.

Raman O VI Profile Analysis of Accretion and Bipoloar Outflow in Sanduleak's Star

  • Heo, Jeong-Eun;Angeloni, Rodolfo;Di Mille, Francesco;Palma, Tali;Lee, Hee-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.58.4-59
    • /
    • 2017
  • Sanduleak's star is a suspected symbiotic binary located in the Large Magellanic Cloud. It is known that it has a giant jet with physical size ~ 14pc. Its spectrum shows two strong emission bands at $6825{\AA}$ and $7082{\AA}$, which are originated from Raman-scattering of O VI by neutral hydrogen atoms. We present the high-resolution spectrum of Sanudleak's star obtained with MIKE at the Magellan-Caly telescope to investigate the O VI emission region based on the profiles of the two Raman features. In this spectrum, it is noted that the Raman $6825{\AA}$ feature exhibits a single broad peak profile, which is in high contrast with a clear triple peak profile of the Raman $7082{\AA}$ feature. In our analysis we suggest that the O VI emission region consist of three main emission parts: an accretion disk, a bipolar outflow and an optically thick, compact component surrounding the white dwarf. By performing Monte Carlo simulation we constrain the representative column density of the H I scattering region N_HI ~1${\times}$10^23 cm^-2, which is in accordance with the observed flux ratio in the two Raman features F(6825)/F(7082) ~ 4.5.

  • PDF

Parallel Paths in Folded Hyper-Star Graph (Folded 하이퍼-스타 그래프의 병렬 경로)

  • Lee, Hyeong-Ok;Choi, Jung;Park, Seung-Bae;Cho, Chung-Ho;Lim, Hyeong-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.7
    • /
    • pp.1756-1769
    • /
    • 1999
  • Parallel paths in an interconnection network have some significance in that message transmission time can be reduced because message is divided into packets and transmitted in parallel through several paths, and also an whose nodes has 2n binary bit string, is an interconnection network which has a lower network cost than hypercube and its variation. In this paper, we analyze node disjoint parallel path in Folded Hyper-Star graph FHS(2n,n) proposed as the topology of parallel computers and, using the result, prove that the fault diameter of a Folded Hyper-Star graph FHS(2n,n) is 2n-1.

  • PDF