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Abstract: We study the pseudo-synchronous orbital motion of a binary system on the main sequence.
The equations of the pseudo-synchronous orbit are derived up to O(e4) where e is the eccentricy of the
orbit. We integrate the equations to present their solutions. The theoretical results are applied to the
evolution of the orbit and spin of the binary star Y Cygni, which has a current eccentricity of e0 = 0.142.
We tabulate our numerical results for the evolution of the orbit and spin per century. The numerical
results for the semi-major axes and rotational angular velocities in the evolutional time scales of three
stages (synchronization, circularization, and collapse time scale) are also tabulated. Synchronization is
achieved in about 5× 103 years followed by circularization lasting about 1× 105 years before decaying in
2× 105 years.
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1. INTRODUCTION

In a close detached binary system, tidal interaction cou-
ples the spin and orbital angular momenta of the com-
ponent stars. The orbit and spin of a binary system
evolve from a non-synchronous orbit to a synchronous
one gradually under the influence of tidal friction. It
is important and meaningful to study the synchroniza-
tion process of the orbit and spin. The evolution of
the orbit and spin is always from non-synchronization
to synchronization, where the synchronized orbit is the
final destination of the evolution. This is an inevitable
tendency of the evolution from the younger binary stars
to old binary stars.

Generally speaking, the synchronization of binary
stars requires that the rotational angular velocity Ω
equals the orbital angular velocity ω. However, strictly
speaking, truly synchronous binary stars are found only
very rarely among binary systems. What is observed
instead is that each component star settles in a state
of pseudo-synchronization Ω 6= ω. All binary systems
appear to pass through a phase of pseudo-synchronous
orbital motion. Therefore, pseudo-synchronous orbits
are quite common in binary systems. Hence, it is very
important to study the evolution of orbital and spin
periods of binary stars.

Zahn (1977, 1978, 1989) and Zahn & Bouchet
(1989) established the set of equations describing the
orbital evolution of non-synchronization of binary sys-
tems. However, they did not investigate the orbit and
spin of the pseudo-synchronization. Hut (1980, 1981)
defines pseudo-synchronization and showed that the
spin period converges to a value slightly smaller than
the orbital period by an order of e2 .

Li (2012, 2013, 2015) studied the orbit and spin
synchronization of binary stars using analytical and nu-
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merical solutions, but this study does not cover the
pseudo-synchronization process. We investigate the or-
bit and spin of pseudo-synchronization of binary stars
and obtain the solution of the set of the equations of
pseudo-synchronization.

2. DEFINITION OF PSEUDO-SYNCHRONIZATION

Zahn (1977) wrote down the equations for the orbit
and spin of a non-synchronized binary system and in
Zahn (1978) also revised the equations for the time rate
change of eccentricity de/dt and spin rate d(IΩ)/dt of
the primary star as follows.
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Here, M,R and I denote the mass, radius, and moment
of inertia of the primary star and M2 denotes the mass
of the secondary star. The parameter q = M2/M is
the mass ratio of the primary and secondary stars. The
parameters a, e, ω denote semi-major axis, eccentricity
and mean motion. We denote the apsidal motion by
k2 and the friction time by tF introduced by Zahn &
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Table 1

Orbital elements and derived parameters for Y Cygni

Y Cyg P(d) a(R⊙) M(M⊙) q R(R⊙) e logL(L⊙) k2 V (km s−1)
Orbit elements 2.996 28.49 17.57 0.97 5.93 0.142 4.653 0.005745 146

Y Cyg tF (yr) k2/tF(yr
−1) MR2/I ω Ω N

Derived values 0.1038 0.0553 8.2508 2.0965 3.5735 49.59

P, a,M, q,R, L and e are from Simon et al. (1994) and Ibanoglu & Soyudugan (2006). Data for k2 are from Peraiah (1965). The value
of tF is calculated using Equation (4).

Bouchet (1989)

tF =

(

MR2

L

)1/3

. (4)

Here, L is the stellar luminosity.
Hut (1981) gives the definition of the pseudo-

synchronization, describing the phenomenon of near
synchronization of revolution and rotation around pe-
riastron, where the tidal interaction is the strongest.
Pseudo-synchronism is therefore important in bi-
nary systems with substantial eccentricity. As Hut
(1981) discusses, Mercury apparently achieved pseudo-
synchronism with the Sun where its spin rate is near its
orbital revolution near perihelion.

According to the definition by Hut (1981), Ω =
Ωps if dΩ/dt = 0 in Equation (3). It can be ob-
tained for definition of the condition of the pseudo-
synchronization, from which (ω−Ω)+e2
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This shows that the departure from strict synchronism
(Ω = ω) is of order e2.

3. PSEUDO-SYNCHRONOUS EQUATIONS AND THEIR

SOLUTIONS

Substituting the condition for the pseudo synchroniza-
tion (5) into Equations (1) and (2), we obtain the fol-
lowing two equations for pseudosynchronization
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Here, the parameter K1 is given by

K1 = (k2/tF )q(1 + q)(R/a)8. (8)

With the presence of the term O(e4), Equations (6) and
(7) are valid up to the order of e3. As we will present
in Section 4, we will apply our theoretical model to
the binary system Y Cyg, for which the eccentricity
e = 0.142, e4 = 0.0004 is small enough. Hence Equa-
tions (6) and (7) may be neglected for the order O(e4).
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ln

(

a

a0

)

=

∫ e

e0

(

1−
6

7
e2
)

d(e2) (11)

which leads to

ln(a/a0) = (e2 − e20)−
6

7
(e4 − e40) +O(e6). (12)

Neglecting terms of order e4, we obtain

a = a0 exp(e
2 − e20). (13)

Next, we solve Equation (7) in order to obtain
variation of the eccentricity with time. Writing Equa-
tion (7) in the following form
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where the parameter K2 is defined by

K2 = (k2/tF )q(1 + q)R8. (15)

Substituting for Equation (10) into Equation (11),
it can be written as
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Table 2

Numerical results for the change of the orbital elements and spin of Y Cyg during 100 years

Orbital Elements a/a0 a(R⊙) δa(R⊙) e/e0 e δe δΩ

Y Cyg 0.9999 28.487 −0.0004 0.9996 0.1419 −0.0001 0.00005

Integration from t0 and e0 to t and e yields
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From Equation (5) with e = e0 we may write
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Zahn (1977) defined the circulatization time tcir by
means of his non-revised Equation (2) for de/dt as
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assuming that Ω = ω. However, in this work, we use
the revised equation for de/dt with Ω = ω, in which
case the circularization time should be written as
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According to Equation (3), the synchronization
time tsyn becomes
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In turn, the orbital decay time tdecay or the collapse
time of the system can be written as
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4. PSEUDO-SYNCHRONIZATION OF ORBIT AND SPIN

IN Y CYGNI

We choose the binary system Y Cygni as our exemplary
model for pseudo-synchronization. The spectral type of
Y Cyg is traditionally given as B0 V in the literature,
but has been found to be earlier, O9.8 V (Simon et al.
1994). Y Cyg is an eclipsing binary and is also very well
known for its apsidal motion. According to Giuricin
(1984), the rotational velocity V = 146 km s−1 and the
estimated synchronized velocity and Vk = 88 km s−1

for the binary star Y Cyg, which shows that this bi-
nary system is not a synchronous binary system. The
orbital elements and the deduced parameters are listed
in Table 1.

Noting that e ≃ e0, we use l‘Hospital’s rule to ap-
proximate Equation (20) by

N(e) =
ln e2 − ln e20
e2 − e20

≃
1

e20
. (30)

For Y Cyg, we have e0 = 0.142, which, in turn, leads to
N ≃ e−2

0 = 49.6. The use of l‘Hospital’s rule is justified
because the variation δe is very small.

Substituting these values for data of q, e, R,N
while taking t − t0 = 100 yr into Equations (16)–(18)
and (19)–(20) and (22), we obtain the change of the
orbit and spin per century for Y Cyg, which is summa-
rized in Table 2.

We estimate the changes of the orbital semi-major
axis and spin of Y Cyg when the binary system achieves
synchronization, circularization, and collapse. Substi-
tuting these values of data in Table 1 into Equations
28,27 and 29, we obtain the values of tcir, tsyn and tdecay.

tsyn = 4.774× 105 yr,

tcir = 1.279× 105 yr

tdecay = 2.239× 105 yr (31)

Substituting Equation (31) into Equations (23),
(24), and (25), we obtain the values for the three cases of
evolutional stages of pseudo-synchronization of Y Cyg
listed in Table 3.

5. CONCLUSION

It can be seen from Table 2 that the orbital parameters
and spin exhibit very slow changes for 100 years due
to the action of the tidal friction for Y Cyg. We may
also find from Table 3 that Y Cyg achieves or enters the
synchronization stage firstly, and then, circularization
stage and finally enter the orbital collapse stage.

From Table 3, we may assert that in the system of
Y Cyg the orbital semi-major axis, a, decreases with age
monotonically and the spin rate, Ω, increases with age
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Table 3

Evolution of semi-major axis and spin of Y Cyg

Stage t a/a0 a δa δΩ
(yr) (R⊙) (R⊙) (rad/d)

A 4.774 × 103 0.9991 28.4643 −0.0256 0.0031
B 1.279 × 105 0.9811 27.9515 −0.05384 0.0065
C 2.239 × 105 0.9669 26.852 −0.9430 0.1998

Numerical results for the three evolutional stages of the orbital
semi-major axis and spin of Y Cyg. The stages A, B and C stand
for synchronization, circularization and collapse, respectively.

continuously in each stage. In the synchronous stage
the decrease is large for δasyn, and the increase is large
for δΩsyn. In the circularization stage, we find that
δacir < δasyn and δΩsyn > δΩcir. However, in the orbital
collapse stage, δa < δacir < δasyn and δΩ > δΩcir >
δΩsyn.

It should be noted that Equations (1) and (2) are
valid up to second order of eccentricity e and that higher
order terms O(e4) are neglected. Hence these equations
should be used for binary systems with a small eccen-
tricity, and may be inadequete to those with a large
eccentricity. For the eccentricity e = 0.142 of the eclisp-
ing binary system Y Cyg, we have e4 = 0.0004, which
is sufficiently small validating our use of Equations (1)
and (2).
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