• Title/Summary/Keyword: binary sensor

Search Result 129, Processing Time 0.023 seconds

Low-Power IoT Microcontroller Code Memory Interface using Binary Code Inversion Technique Based on Hot-Spot Access Region Detection (핫스팟 접근영역 인식에 기반한 바이너리 코드 역전 기법을 사용한 저전력 IoT MCU 코드 메모리 인터페이스 구조 연구)

  • Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.2
    • /
    • pp.97-105
    • /
    • 2016
  • Microcontrollers (MCUs) for endpoint smart sensor devices of internet-of-thing (IoT) are being implemented as system-on-chip (SoC) with on-chip instruction flash memory, in which user firmware is embedded. MCUs directly fetch binary code-based instructions through bit-line sense amplifier (S/A) integrated with on-chip flash memory. The S/A compares bit cell current with reference current to identify which data are programmed. The S/A in reading '0' (erased) cell data consumes a large sink current, which is greater than off-current for '1' (programmed) cell data. The main motivation of our approach is to reduce the number of accesses of erased cells by binary code level transformation. This paper proposes a built-in write/read path architecture using binary code inversion method based on hot-spot region detection of instruction code access to reduce sensing current in S/A. From the profiling result of instruction access patterns, hot-spot region of an original compiled binary code is conditionally inverted with the proposed bit-inversion techniques. The de-inversion hardware only consumes small logic current instead of analog sink current in S/A and it is integrated with the conventional S/A to restore original binary instructions. The proposed techniques are applied to the fully-custom designed MCU with ARM Cortex-M0$^{TM}$ using 0.18um Magnachip Flash-embedded CMOS process and the benefits in terms of power consumption reduction are evaluated for Dhrystone$^{TM}$ benchmark. The profiling environment of instruction code executions is implemented by extending commercial ARM KEIL$^{TM}$ MDK (MCU Development Kit) with our custom-designed access analyzer.

TPC-BS: Transmission Power Control based on Binary Search in the Wireless Sensor Networks (TPC-BS: 센서 네트워크에서 이진검색 방법을 이용한 빠른 전송전력 결정 방법)

  • Oh, Seung-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.11
    • /
    • pp.1420-1430
    • /
    • 2011
  • This paper proposes a new method to optimize energy consumption in a wireless modem by setting up a transmission power value according to the distance between nodes and circumstance in the MAC layer of IEEE 802.15.4. The proposed method can dynamically find an optimal transmission power range using the binary search scheme and minimize overhead caused by multiple message transmissions when determining the optimal transmission power. The determined transmission power is used for transmitting data packets and can be modified dynamically depending on the changes in a network environment when exchanging data packets and acknowledgement signals. The results of the simulations show 30% reduction in energy consumption while 2.5 times increase in data transmission rate per unit of energy comparing with IEEE 802.15.4 standard.

Laser Welding of Seal Tube for Instrumented Irradiation Fuel Test (계장핵연료 조사시험용 실튜브 레이저용접기술)

  • Kim Soo-Sung;Lee Chul-Yong;Kim Woong-Ki;Park Geun-Il;Koh Jinh-Yun;Seo Jun-Seok
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.43-48
    • /
    • 2005
  • This work was carried out to obtain sound welds and to select a most suitable binary metal joint among three different dissimilar binary metal combinations such as Zr-4/Ta, Mo/Ta and Ti/Ta(seal tube/sensor sheath) joints fur the instrumented nuclear fuel irradiation test. To do this, Taguchi experimental method was employed to optimize the experimental data. In addition, metallography, micro-focus x-ray radiography and hardness test were conducted to examine the welds. From the weld bead appearance, penetration depth and bead width as well as weld defects standpoint, Zr-4/Ta joint is suggested for the circumferential joining between a seal tube and a sensor sheath. The optimized welding parameters based on Zr-4/Ta joint are suggested as well.

Land cover classification of a non-accessible area using multi-sensor images and GIS data (다중센서와 GIS 자료를 이용한 접근불능지역의 토지피복 분류)

  • Kim, Yong-Min;Park, Wan-Yong;Eo, Yang-Dam;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.493-504
    • /
    • 2010
  • This study proposes a classification method based on an automated training extraction procedure that may be used with very high resolution (VHR) images of non-accessible areas. The proposed method overcomes the problem of scale difference between VHR images and geographic information system (GIS) data through filtering and use of a Landsat image. In order to automate maximum likelihood classification (MLC), GIS data were used as an input to the MLC of a Landsat image, and a binary edge and a normalized difference vegetation index (NDVI) were used to increase the purity of the training samples. We identified the thresholds of an NDVI and binary edge appropriate to obtain pure samples of each class. The proposed method was then applied to QuickBird and SPOT-5 images. In order to validate the method, visual interpretation and quantitative assessment of the results were compared with products of a manual method. The results showed that the proposed method could classify VHR images and efficiently update GIS data.

An Adaptive Transmission Power Control Algorithm for Wearable Healthcare Systems Based on Variations in the Body Conditions

  • Lee, Woosik;Kim, Namgi;Lee, Byoung-Dai
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.593-603
    • /
    • 2019
  • In wearable healthcare systems, sensor devices can be deployed in places around the human body such as the stomach, back, arms, and legs. The sensors use tiny batteries, which have limited resources, and old sensor batteries must be replaced with new batteries. It is difficult to deploy sensor devices directly into the human body. Therefore, instead of replacing sensor batteries, increasing the lifetime of sensor devices is more efficient. A transmission power control (TPC) algorithm is a representative technique to increase the lifetime of sensor devices. Sensor devices using a TPC algorithm control their transmission power level (TPL) to reduce battery energy consumption. The TPC algorithm operates on a closed-loop mechanism that consists of two parts, such as sensor and sink devices. Most previous research considered only the sink part of devices in the closed-loop. If we consider both the sensor and sink parts of a closed-loop mechanism, sensor devices reduce energy consumption more than previous systems that only consider the sensor part. In this paper, we propose a new approach to consider both the sensor and sink as part of a closed-loop mechanism for efficient energy management of sensor devices. Our proposed approach judges the current channel condition based on the values of various body sensors. If the current channel is not optimal, sensor devices maintain their current TPL without communication to save the sensor's batteries. Otherwise, they find an optimal TPL. To compare performance with other TPC algorithms, we implemented a TPC algorithm and embedded it into sensor devices. Our experimental results show that our new algorithm is better than other TPC algorithms, such as linear, binary, hybrid, and ATPC.

A Basic Study on Development of the Hetero-core Type Fiber Optic Pressure Sensor (헤테로코어형 광파이버 압력센서개발을 위한 기초연구)

  • Kim, Y.B.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2010
  • A new type fiber optic sensing system has been developed as a commercially available standard using the technique of hetero-core spliced fiber optic sensor, for the purposes of monitoring large scaled structures, preserving natural environments and measuring physical phenomenons. The sensing system has been tested and evaluated in a possible outdoor condition in view of the full scaled operation at actual sites to be monitored. Additionally, the developed system in this work conveniently provides us with various options of sensor modules intended to measure such physical quantities as displacement, distortion, pressure, binary states and liquid adhesion. The experiment study has been performed to examine the performance to a pseudo-cracking experiment in the outdoor situation, and to clarify temperature influences to the system in terms of the coupling of optical connectors and the OTDR stability. It has been verified that the sensing system is robust to the temperature change ranging from the general condition to the hard condition. Especially, in this study, the specification and performances of the pressure sensor have been demonstrated to show the capability of inspecting various physical quantities.

  • PDF

Joint Radio Selection and Relay Scheme through Optimization Model in Multi-Radio Sensor Networks

  • Lee, HyungJune
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4451-4466
    • /
    • 2014
  • We present joint radio selection and relay scheme that delivers data from a source to a sink in heterogeneous stationary sensor networks consisting of various radio interfaces. The proposed scheme finds the optimal relay nodes and their corresponding radio interfaces that minimize energy consumption throughout the network while satisfying the end-to-end packet deadline requirement. We formulate the problem of routing through radio interface selection into binary integer programs, and obtain the optimal solution by solving with an optimization solver. We examine a trade-off relationship between energy consumption and packet delay based on network level simulations. We show that given the end-to-end deadline requirement, our routing algorithm finds the most energy-efficient routing path and radio interface across mesh hops. We demonstrate that the proposed routing scheme exploits the given packet delivery time to turn into network benefit of reducing energy consumption compared to routing based on single radio interface.

Linearly Polarized 1-kW 20/400-㎛ Yb-doped Fiber Laser with 10-GHz Linewidth (선편광된 10 GHz 선폭의 1 kW급 20/400-㎛ 이터븀 첨가 광섬유 레이저)

  • Jung, Yeji;Jung, Minwan;Lee, Kangin;Kim, Taewoo;Kim, Jae-Ihn;Lee, Yongsoo;Cho, Joonyong
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.3
    • /
    • pp.120-125
    • /
    • 2021
  • We have developed a linearly polarized high-power Yb-doped fiber laser in the master oscillator power amplifier (MOPA) scheme for efficient spectral beam combining. We modulated the phase of the seed laser by pseudo-random binary sequence (PRBS), with the bit length optimized to suppress stimulated Brillouin scattering (SBS), and subsequently amplified seed power in a 3-stage amplifier system. We have constructed by coiling the polarization-maintaining (PM) Yb-doped fiber, with core and cladding diameters of 20 ㎛ and 400 ㎛ respectively, to a diameter of 9-12 cm for suppression of the mode instability (MI). Finally, we obtained an output power of 1.004 kW with a slope efficiency of 83.7% in the main amplification stage. The beam quality factor M2 and the polarization extinction ratio (PER) were measured to be 1.12 and 21.5 dB respectively. Furthermore, the peak-intensity difference between the Rayleigh signal and SBS signal was observed to be 2.36 dB in the backward spectra, indicating that SBS is successfully suppressed. In addition, it can be expected that the MI does not occur because not only there is no decrease in slope efficiency, but also the beam quality for each amplified output is maintained.

CMOS Integrated Fingerprint Sensor Based on a Ridge Resistivity (CMOS공정으로 집적화된 저항형 지문센서)

  • Jung, Seung-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.571-574
    • /
    • 2008
  • In this paper, we propose $256{\times}256$ pixel array fingerprint sensor with an advanced circuits for detecting. The pixel level simple detection circuit converts from a small and variable sensing current to binary voltage out effectively. We minimizes an electrostatic discharge(ESD) influence by applying an effective isolation structure. The sensor circuit blocks were designed and simulated in standard CMOS $0.35{\mu}m$ process. Full custom layout is performed in the unit sensor pixel and auto placement and routing is performed in the full chip.

  • PDF