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Land cover classification of a non-accessible area using
multi-sensor images and GIS data
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Abstract

This study proposes a classification method based on an automated training extraction procedure that may be used
with very high resolution (VHR) images of non-accessible areas. The proposed method overcomes the problem of scale
difference between VHR images and geographic information system (GIS) data through filtering and use of a Landsat
image. In order to automate maximum likelihood classification (MLC), GIS data were used as an input to the MLC of a
Landsat image, and a binary edge and a normalized difference vegetation index (NDVI) were used to increase the puri-
ty of the training samples. We identified the thresholds of an NDVI and binary edge appropriate to obtain pure samples
of each class. The proposed method was then applied to QuickBird and SPOT-5 images. In order to validate the
method, visual interpretation and quantitative assessment of the results were compared with products of a manual
method. The results showed that the proposed method could classify VHR images and efficiently update GIS data.
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able very high resolution (VHR) images, obtained from
QuickBird, IKONOS, KOMPSAT-2, and SPOT-5, etc., can

provide a large amount of ground surface information in a

1. Introduction

Land cover is useful information to carry out military oper-

ations and it requires regular updating of a land cover data- timely manner (Huang ef al. 2007). Therefore, these images

base for accurate and timely geospatial information (Park et allow the generation of geometrically detailed land cover

al. 2009). To quantify database change, many components
have to be considered because they are abstract and subjective
(Kim 2008). While geospatial information of most areas is
easily obtained, it is difficult to get and update in non-accessi-
ble areas such as a demilitarized zone (DMZ), because of mil-
itary agreements prescribing access-denied and aircraft-denied
areas in DMZs. In this case, maps relying on satellite remote-
sensing data have many advantages because they can obtain
data for any large areas without the limitations of approaches

relying on closer proximity. In particular, commercially avail-

maps. Many studies have proven the use of VHR imagery in
updating large-scale thematic maps through diverse super-
vised classification approaches (Davis et al. 2002; Tarantino
et al. 2003). Supervised classification or manual classification
performed by a trained expert is labour intensive, highly sub-
jective, and non-reproducible (Zijdenbos et al. 1998;
Zijdenbos et al. 2002) because such classification involves
time consuming and detailed image extraction work per-
formed by an operator with a lot of experience (Walter 1998).
In addition, even though each analyst extracts training data
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from each of the classes, there are always differences among
them because the analysts do not have the same level of
expertise (Eo 1999). Thus, all of the aforementioned factors
play a role in decreasing the accuracy and reliability of the
classification results.

Classification that does not need the intervention of an
operator can be an effective alternative because it can retain
the constancy of classification results. In addition, it can be
effective in saving time by automatically extracting training
data without operator intervention. Therefore, many automatic
classification methods have been proposed. In particular, the
approach utilizing geographic information system (GIS) data,
like a land cover map, has been studied because of the advan-
tage that an operator can easily handle and refer to attributes
of the GIS data. GIS data are generally used as a knowledge
to identify some of the features and as an input data to auto-
matically extract training data in a supervised classification
process (Walter 1998; Di et of. 2000; Yang 2007; Eo ef al.
2008; Maselli ez al. 2008). These methods using GIS data can
replace the manual sampling process required by the super-
vised classification procedure for obtaining the parameters. In
addition, many studies have proposed the use of GIS data as a
logical channel or a prior probability (Maselli e al. 1992;
Ricchetti 2000; Chen and Stow 2003; Kim ez al. 20092).
These methods improve the classification accuracy by provid-
ing some information to the analyst and the classifier used.

However, these methods are difficult to use when there is a
scale difference between the VHR image and the GIS data to
be used for generating pure training samples of each class in a
VHR image. Also, many applications of traditional single-res-
olution classification approaches have led to unsatisfactory
results due to the more heterogeneous spectral-radiometric
characteristics within land-use or land-cover features por-
trayed in VHR images (Barnsley and Barr 1996). Thus, the
objective of this paper is to propose a classification method
based on an automated training extraction procedure to over-
come scale differences between VHR images and GIS data.

The remainder of the paper is organized as follows. In
Section 2, the experimental site and source data selected for
this paper are explained. In Section 3, the automated training
extraction method that can adapt to a VHR image using GIS
data is discussed. In Section 4, two application examples are

described and the results are presented. Discussion with con-
cluding remarks is presented in Section 5.

2. Experimental site and data
source

2.1 Experimental site

The DMZ between South Korea and North Korea forbids
entry by a private citizen and restrains most developments as a
military buffer zone. This DMZ is an almost perfect natural
environment, which is very rare, and many researchers are
studying this area.

In this paper, we selected two experimental sites located in
DMZs of Korea. The first site was Yeoncheon (100 knv’) in
South Korea, which includes an agricultural area, water, a
built-up area, grass, and a forest feature. The second site was
Cheorwon (64 knr) in South Korea, which includes four land
cover classes but no grass features (Fig, 1). There are also the
Tae-Pung observatory and a ceasefire line in these sites.

2.2 Data source

The proposed method used three data sources: a military
digital map (MDM), Landsat image, and VHR image. These
data are of different spatial resolution to each other. Table 1
presents information of datasets used in this paper. Although
there is a difference of acquisition time among data, we
assume that there is little land cover change because of the
restraint of development in the DMZ.

The MDM consists of small-scale vector data and pro-
vides land cover and land use information for military opera-
tions in non-accessible areas. The feature codes of the MDM
follow feature attribute coding catalogue guidelines, and are
categorized as built-up, water, crop, grass, and forest (table
2). The MDM used in this paper was acquired in 2003 and
covers two experimental sites. Due to military agreements
concerning the access-denied and aircraft-denied areas in
DMZs, it is difficult to update and revise. In the case of site
2, there were even areas that did not have attributes in the
MDM.

Landsat Thematic Mapper (TM), a middle resolution
imager (spatial resolution equal to 30 m), is a multispectral
scanning radiometer that was carried on board Landsat 4 and
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5. TM data cover the visible, near-infrared, shortwave, and
thermal infrared spectral bands of the electromagnetic spec-
trum.

Launched on October 18, 2001, QuickBird collects multi-
spectral and panchromatic imagery concurrently, and pan-
sharpened products in natural or infrared colours are avail-
able. The multispectral products cover the visible and near-
infrared wavelengths in four bands. Basic Imagery products
are delivered at the resolution at which the data were collect-
ed (ranging from 2.44 to 2.88 m), while Standard and Ortho
Imagery products are resampled to a 2.4 or 2.8 m pixel spac-
ing. SPOT-5 was launched on May 4, 2002, and offers a res-
olution of 2.5-5 m in panchromatic mode and 10 m in multi-
spectral mode. Ten-metre colour products are derived from
multispectral images acquired simultaneously in the same
four spectral bands. Bands B1, B2, and B3 yield images at a
resolution of 10 m; the SWIR band yields 20 m images,

which are then resampled to obtain a 10 m image.

Table 1. Information of dataset

Sensor Spatial ) A
/Source |Resolution Time Location
QuickBird | 2.8m | August 2004 |Yeoncheon in South Korea
SPOT-5 10m  |October 2005|Cheorwon in South Korea
Landsat TM| 30m June 2004 Above two sites
MDM | 1:50 000 (scale) 2003 Above two sites

(b) SPOT-5 image of
Cheorwon.

(a) QuickBird image of site 1

Fig. 1. Experimental sites
3. Proposed methods

3.1 Overview

This paper proposed a classification method based on an
automated training extraction procedure to overcome a scale
difference between VHR images and GIS data. The proposed
method consists of three processes, a flowchart of which is
given in Fig. 2. The first step is to conduct a maximum likeli-
hood classification (MLC) of a Landsat image by using an
MDM as input data. The second step is to extract training
samples through filtering methods with binary edge and nor-
malized difference vegetation index (NDVI) maps. Finally,
the classification of a VHR image is conducted using the
training parameters extracted in the following step. All of the
processes were automated and conducted using the MATLAB
R2008a program and ENVI 4.5 software with a Windows XP
operating system.

Table 2. MDM feature code and definition

Integrated Feature
Class Code

Definition

Built-up

AL020| An area containing a concentration of buildings and other structures

An area containing any surface water that is flowing or free standing such as lakes, rivers, oceans, reser-

SA010| .
voirs, etc
Water -
BH140| A natural flowing watercourse
BHO090| An area periodically covered by flood water, excluding tidal waters
Crop EAO010| An area that has been tilled for the planting of crops
BH135| An area periodically covered with water used for growing rice
Grass EB020 | Low-growing woody plants
EB010| An area composed of uncultured plants that have little or no woody tissue
Forest | EC030| Woody perennial plants, having a self-supporting main stem or trunk

495
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Fig. 2. Flowchart of the classification method based on the automat-
ed training extraction procedure,

3.2 Classification of the Landsat
image using the MDM

It is difficult to directly enter attributes of the MDM as input
data to automate the procedure of extracting training samples
of 2 VHR image due to the scale differences between the
MDM and the VHR image. Therefore, the use of a Landsat
image may overcome this problem. The results of the MLC of
the Landsat image play a role in the proposed method.

In order to conduct an MLC of the Landsat image, the
attributes of the MDM were used as training data and prior
probabilities. The prior probabilities of each class were calcu-
lated by the area proportion of the feature codes on the MDM.
Six bands of the Landsat data were applied to conduct the
MLC omitting the thermal band.

3.3 Problem of spatial resolution
difference between data

For classification of the VHR image, the training samples
were collected by extracting pixels from the VHR image cor-
responding to pixels of the Landsat image that were correctly
classified according to comparison with attributes of the
MDM. It is very insportant that the quality of training samples
is high to support the ML.C of the VHR image. However,
there are limits in terms of acquiring the pure training data of
each class because of the spatial resolution differences
between the Landsat and VHR images (Fig. 3). In one pixel of
a Landsat image, there are many VHR pixels having different
land cover features. Thus, the VHR image pixels of other
classes located in one pixel of the Landsat image should be

removed in order to obtain pure training data for a specific
class. The proposed method removes these pixelé o minimize
their influence by using binary edge and NDVI maps. In
Sections 3.4 and 3.5, generation of the binary edge and NDVI

maps is explained.

Landsat image

Fig. 3. Problem generated by scale difference between Landsat
image and VHR image.

3.4 Generation of the binary edge

map

The binary edge map was generated by extracting an edge
from the second band, which showed the greatest contrast in
the QuickBird and SPOT-5 images. The procedure for gener-
ating the binary edge map involved four steps:

(1) Application of Laplacian high-pass filter;

(2) Transformation to grey scale;

(3) Thresholding;

(4) Application of morphological filter.

At step 1, a Laplacian high-pass filter was applied to the
VHR image (Fig. 4(b)). This filter enhances the high frequen-
cy components of an image in all directions. In this study, we
used 7 by 7 window sizes. The components of the filter are
shown in Fig. 4(d). At step 2, the results of step 1 were trans-
formed to grey scale (0-255) to apply a threshold. At step 3, if
the value of an edge was either below 24 or above 231, the
value was changed to 255 and the other values were changed
to 0 in order to construct a binary map. Finally, a binary edge
map was generated by applying a ‘closing’ process, a mor-
phological filter (Fig. 4(c)). The binary edge map can be used
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to identify a built-up area, such as road, of the VHR image in
the automated training procedure.

(b) Results afier the Laplacian
high-pass filter
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(c) Binary edge map after the

(d) Laplacian high-pass kernel.
threshold and closing filter

Fig. 4. Generation of the binary edge map.

3.5 Setting of forest threshold (FT)

in the NDV! map

The NDVI is the most well known and widely used ratio-
based index and is frequently used as a device to detect the acti-
vation rate of vegetation (Rouse et al. 1974). In addition, it is
used as a threshold baseline to classify land cover (Wang and
Tenhunen 2004; Haiping et al. 2006). In this paper, the NDVI
plays an important filter role to distinguish some classes in con-
Jjunction with the binary edge map.

In general, in an NDVI map, non-vegetated surfaces are neg-
ative values, while vegetated ones are positive. In areas where
vegetation canopies do not achieve absolute coverage, the
NDWVI is susceptible to the spectral influence of the soil, giving
the possibility of uncertainties in interpretation (Peters and Eve
1995). However, this effect can also increase the NDVI of cer-
tain vegetated surfaces, and could potentially improve the sepa-
ration of land cover classes. In particular, it is usefully utilized
in the case of evergreens. Evergreens are characterized by very
high positive NDVI values and they are located in a higher his-

togram position than other vegetation features regardless of the
season (Martinuzzi et al. 2008). This is important in choosing
the threshold of the NDVI in that there are many evergreens in
DMZs of Korea during the four seasons.

After investigating a number of satellite images of non-
accessible areas, the forest threshold (FT) was set as including
the top 0.08% of the NDVI values. Using this criterion, 0.8 of
site 1 and 0.13 of site 2 were assessed as evergreen forest (Fig.
5 and Fig. 6). We visually confirmed that pixels that had an
NDVI value higher than the FT are the forest feature (red and
blue points in Fig. 5(d) and 6(d)). There was a difference
between the values of the FT for site 1 and site 2 because

there was a seasonal change of two months.

“

Fig, 5. Setting of FT for site 1.
{a) NDVI map, (b} Histogram of NDVI miap, (¢) Magnified image of red box (3,
2, 1 band composite), (d) Pixels having NDVI value higher than ¥T (red points).
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Fig. 6. Setting of FT for site 2.
{a) NDVI map, (b) Histogram of NDVI map, (c) Magnified image of red box (3,
2, 1 band composite), (d) Pixels having NDVI value higher than FT (blue points).




3.6 Automatic extraction of train—

ing samples

Filtering is good for extracting specific features and objects
that an analyst wants and it is used in various fields such as
road extraction, fire, and red tide detection in addition to clas-
sification (Zhu et al. 2005; Han and Lee 2006; Kim ef al.
2009b). This paper uses a filtering method to automatically
extract training samples for classification. The process is an
important part of the proposed method for conducting an
MLC of the VHR images because the higher the quality of the
training samples, the better the results of the classification.
The process of “automated extraction method of training sam-
ple for VHR image™ occurs in the following steps:

(1) Extraction of latent training samples of each class in the

VHR image;

(2) Elimination of mixed pixels in latent training samples

through binary edge and NDVI thresholds;

(3) Calculation of the parameters of training samples

extracted from the previous step.

In step 1, the location of correctly classified pixels is
obtained through a comparison between the attributes of the
MDM and the classification result of the Landsat image.
Then, latent training samples of each class in the VHR image
are extracted by using the derivative location. However, they
still include not only the feature of the desired class but also
different features due to the difference of spatial resolution
between the Landsat image and VHR images as illustrated in
Fig. 3 (Section 3.3). Removal of other classes in the specific
training sample is required to obtain pure pixels in the auto-
mated sampling procedure.

In step 2, the mixed pixels that occurred at step 1 can be
removed by applying the binary edge and NDVI thresholds.
The binary edge can extract the built-up feature well because
built-up features are thin and small in the VHR image of non-
accessible areas. Therefore, built-up features in this specific
class can be effectively removed or included by choice of the
binary edge threshold according to need. In the case of the
NDV], it is effective in identifying forest, water, and built-up
features as described in Section 3.5. In particular, the FT is nec-
essary to separate the forest feature from grass and crop fea-
tures. The threshold options for each feature are shown in table
3. A filtering procedure for mixed pixels is conducted based on

these options, and training samples of each class are finally
extracted. Through these processes, the proposed method is
able to increase the purity of the training samples of each class.
In step 3, parameters, such as covariance and mean values,
of training samples extracted from the previous step are calcu-
lated before MLC of the VHR image. Then, the MLC of the
VHR image is started using the training parameters extracted.

Table 3. Threshold of binary edge and NDVI

Class

Edge Threshold | =255 | # 255 + 255 | #£255 | + 255
NDVI Threshold | <0 <0 | <FT | <FT | >FT

Built-up| Water | Crop | Grass | Forest

4. Results and discussion

Two different scenes from two different sensors were used
to validate the proposed method. Statistics of the training sam-
ples extracted through the automated sampling method were
measured. Then, the classification results were validated

through a visual interpretation and quantitative assessment.

4.1 Statistics of extracted training data

The number of training pixels, mean values, and separabili-
ty of each class were calculated for training samples extracted
from site 1 and site 2. Table 4 shows the number of pixels in
training sets obtained through the automated sampling
method. In order to analyse the statistics, other training sam-
ples were extracted through the manual method, and mean
values were calculated for site 1 and site 2 (tables 5 and 6).
Although there was little difference between mean values of
the two methods for site 1, a similar tendency of mean values
was confirmed. On the other hand, both mean values extract-

ed from site 2 were very similar for all classes.

Table 4. Number of pixels in the training set of each class

Class Site 1 Site 2
Built-up 10433 29794
Water 24657 5191
Crop 395012 1246158
Grass 930943 -
Forest 867686 197402
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Table 5. Mean values of site 1

Cl Automatic Manual
ass
Band 1 Band 2 Band 3 Band 4 Band 1 Band 2 Band 3 Band 4
Built-up 1619 1567 1346 586 1865 1853 1818 592
Water 649 588 483 245 782 422 267 233
Crop 532 701 358 824 414 625 243 937
Grass 458 650 321 801 450 670 279 875
Forest 77 109 34 599 80 111 49 603
Table 6. Mean values of site 2
1 Automatic Manual
ass
Band 1 Band 2 Band 3 Band 4 Band 1 Band 2 Band 3 Band 4
Built-up 119 116 76 90 124 118 72 87
Water 79 59 28 37 81 61 20 23
Crop 112 122 79 105 110 121 76 113
Forest 80 63 97 74 80 63 100 76
Additionally, we measured the separability between classes Table 8. JM distance of site 2
ing the Jeffries-Matusit: i . i
u51.ng e Jeffries 2-17 sita (JM.) distance. The JM distance Class Builtup  Water Crop Forest
estimates the separability of a pair of probability distributions.
A JM distance of 2.0 between spectral cl Id impl. Built-up 0 1899 1261 1971
. classes would imy
assification of oixel data tfl 1 Wi TP Water  1.899 0 1904 1991
classification of pixel data into those classes, assuming they Crop 1261 1.904 0 1.991
were the only two, with 100% accuracy (Kailath 1967). The Forest 1.971 1.991 1.991 0

values of JM distance of the training sets are in tables 7 and 8.
For site 1, separability between most classes was high except
between crop features and grass features that have similar
spectral characteristics in the image because the acquisition
time of the QuickBird image was in summer. Therefore, they
showed a low value of M distance. For site 2, we confirmed
that all classes had high values of JM distance. This means
that the training samples extracted through the automated
sampling method are appropriate to classify the experimental
data.

Table 7. JM distance of site 1

Class |Built-up| Water | Crop | Grass | Forest

Built-up| 0 1.6557 | 1.6022 | 1.8173 | 1.9910
Water | 1.6557 0 1.9089 | 1.9859 | 1.9998
Crop | 1.6022 | 1.9089 0 0.2919 | 1.9420
Grass | 1.8173 | 1.9859 | 0.2919 0 1.8802
Forest | 1.9910 | 1.9998 | 1.9420 | 1.8802 0

4.2 Visual interpretation

VHR images were classified by using the training samples
extracted in the previous step. Fig. 7(a) is the result applied to
the QuickBird image of site 1, and Fig. 7(b) is the result
applied to the SPOT-5 image of site 2. In site 1, built-up,
water, grass, and forest features were well classified.
According to the characteristics of VHR images, the result
provided more detailed and accurate information than the
MDM. However, the crop feature was misclassified into the
grass class because they have similar spectral characteristics
during summer. In site 2, the proposed method showed good
performance for all features except the forest feature. The for-
est feature in shadow was classified to the water class because
they have spectral characteristics similar to the water feature.

Fig. 8 shows magnified areas of the original images, MDM,
and results of the proposed method for comparison. In Fig.
8(a) and 8(b), we can confirm that the proposed method pro-
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vides more detail and accurate information than the MDM in
situations such as the boundary between land and water and
the density of forest, which are necessary for military opera-
tions. In addition, new attributes were assigned for areas that
do not have attributes in the MDM (Fig. 8(c)).

(b) Site 2.

(a)Site 1.
Fig. 7. Result of the proposed method.
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Fig. 8. Four magnified sections of the original images, MDM, and
results of the proposed methed.

4.3 Quantitative assessment

It is necessary to compare the remote sensing-derived clas-
sification map with what is called reference test information
for classification accuracy assessment (Jensen 1996). To con-
duct our quantitative assessment, we chose a photo-interpreta-
tion approach rather than a field survey method to verify the
proposed method because of the access constraints; 3340 ref-
erence points in the QuickBird image of site 1 and 2087

points in the SPOT-5 image of site 2 were extracted. Then, we
compared our method with the manual method that is usually
used in the supervised classification. The classification accu-
racies are listed in tables 9-12, which compare the results from
the proposed and manual methods.

In terms of the accuracy assessments, the overall accuracy
and Kappa coefficient of the manual method for site 1 were
respectively 84.66% and 0.81 (table 9). The overall accuracy
and Kappa coefficient of the proposed method were respec-
tively 83.47% and 0.79 (table 10). The proposed method
showed similar accuracy to the manual method. In the cases
of built-up, water, and forest classes, high accuracies were
seen, while crop and grass classes had relatively low accura-
cies including commission and omission errors due to their
spectral characteristics. Crop and grass features have similar
spectral characteristics during the summer season and this led
to a low separability between crops and grass. This situation
was also evident in the results of the manual method. In the
case of site 2, the overall accuracy and Kappa coefficient of
the manual method were respectively 94.15% and 0.91 (table
11). The overall accuracy and Kappa coefficient of the pro-
posed method were respectively 88.98% and 0.85 (table 12).
The two methods appeared to provide high overall accuracy.
The principal reason is that the SPOT-5 image was taken dur-
ing autumn and homogeneity was increased due to the lower
spatial resolution of the SPOT-5 image. In addition, separabil-
ity among all classes was better at site 2 than at site | because
there were four classes but no grass class in the MDM.
Therefore, the proposed method showed good performance
for site 2.

5. Conclusion

We have suggested a new classification method based on
automatic extraction of training samples for the land cover
classification of VHR imagery. The proposed method could
be effective, saving time and generating objective results
through the exclusion of an intervening operator. In addition,
the use of commercially available VHR images, QuickBird,
and SPOT-5 could provide more detailed and accurate infor-
mation for military operations in non-accessible areas.

In order to automate the training procedure, we determined
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Table 9. Confusion matrix of manual methed for site 1

Built-up Water Crop Grass Forest User’s (é/c)c uracy
i}
Built-up 773 2 0 10 0 98.47
Water 0 418 18 0 0 95.87
Crop 2 0 225 388 0 36.59
Grass 0 0 68 541 17 86.42
Forest 0 0 1 9 886 98.88
Producer’s Accuracy (%) 99.74 99.52 72.12 57.07 98.12 84.66(Overall)
Table 10. Confusion matrix of propoesed methed for site 1
Built-up Water Crop Grass Forest User’s (f;c)c uracy
0
Built-up 732 0 0 11 0 98.52
Water 39 418 15 0 0 88.56
Crop 3 2 129 176 2 4135
Grass 0 168 758 135 71.37
Forest 0 0 0 3 766 99.61 B
Producer’s Accuracy (%) 94.45 99.52 41.35 79.96 84.83 83.47(Overall)
Table 11. Confusion matrix of manual method for site 2
Built-up Water Crop Forest User’s Accuracy(%)
Built-up 483 40 22 32 83.71
Water 0 249 0 1 99.60
Crop 20 0 462 2 95.45
Forest 2 3 6 771 99.36
User’s Accuracy (%) 95.64 85.27 9545 95.66 94.15(Qverall)
Table 12. Confusion matrix of propesed method for site 2
Built-up Water Crop Forest User’s Accuracy(%)
Built-up 464 2 7 50 88.72
Water 38 289 4 106 72.25 N
Crop 2 1 473 19 89.08
Forest 1 0 0 631 99.68
Producer’s Accuracy (%) 91.88 98.97 97.73 78.29 88.98(Overall)

the threshold of the NDVI and binary edge appropriate to

obtain the pure samples of each class. Then, visual interpreta-

tion and quantitative assessment of the results were conducted

to validate the proposed method against a manual method.

The overall accuracies of the two experimental sites were
83.47% and 88.98% and the Kappa coefficients were 0.79

and 0.85 for site 1 and site 2. This accuracy indicates that the

proposed method could be used to provide detailed informa-

tion for military operations. In addition, the proposed method

showed good performance in terms of updating areas that do

not have attributes in the MDM. Therefore, we expect that the

proposed method can be used effectively to automatically
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construct thematic maps for non-accessible areas.

Through the experiments with various satellite images, it
was concluded that this method can be applied without excep-
tion when using a variety of VHR satellite sensors. However,
this method tended to demonstrate low accuracy in terms of
classification between crops and grass classes during the sum-
mer season because of their similar spectral characteristics.
Therefore, in order to solve this problem, future work will
focus on raising the separability between these two classes by
integrating other methods, such as object-oriented and texture-
based approaches.
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