• Title/Summary/Keyword: bilayer graphene

Search Result 25, Processing Time 0.022 seconds

Probing the Atomic Structures of Synthetic Monolayer and Bilayer Hexagonal Boron Nitride Using Electron Microscopy

  • Tay, Roland Yingjie;Lin, Jinjun;Tsang, Siu Hon;McCulloch, Dougal G.;Teo, Edwin Hang Tong
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.217-226
    • /
    • 2016
  • Monolayer hexagonal boron nitride (h-BN) is a phenomenal two-dimensional material; most of its physical properties rival those of graphene because of their structural similarities. This intriguing material has thus spurred scientists and researchers to develop novel synthetic methods to attain scalability for enabling its practical utilization. When probing the growth behaviors and structural characteristics of h-BN, the use of appropriate characterization techniques is important. In this review, we detail the use of scanning and transmission electron microscopies to investigate the atomic configurations of monolayer and bilayer h-BN grown via chemical vapor deposition. These advanced microscopy techniques have been demonstrated to provide intimate insights to the atomic structures of h-BN, which can be interpreted directly or indirectly using known growth mechanisms and existing theoretical calculations. This review provides a collective understanding of the structural characteristics and defects of synthetic h-BN films and facilitates a better perspective toward the development of new and improved synthesis techniques.

Improved Coating of PEDOT : PSS onto CVD Graphene by the Addition of PVA (PVA의 첨가에 의한 CVD 그래핀상 PEDOT : PSS의 코팅성 향상)

  • Park, Min Ui;Shin, Chaeyeon;Kim, Hyeji;Kim, Seung Yeon;Choi, Young Ju;Chung, Dae-won
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.734-739
    • /
    • 2018
  • We successfully coated poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS) on CVD graphene by adding poly(vinyl alcohol) (PVA) to PEDOT : PSS. Extensive studies on the wettability of coating solutions and electrical properties of formed films led us to conclude that PVA with 89% of the degree of saponification and the molecular weight of less than $100,000gmol^{-1}$ produced optimum results. Furthermore, the optimum content of PVA was found to be 5% of PEDOT : PSS by the solid weight. The film coated by PEDOT : PSS with PVA on CVD graphene displayed a conspicuous improvement in the surface roughness, adhesive property, bending durability and stability in resistance at $160^{\circ}C$, compared to those of using CVD graphene films.

TEM Characterization of Graphene and Perspective

  • Lee, Zong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.68-68
    • /
    • 2012
  • 근래 탄소 단원자 두께의 2차원 결정재료인 그래핀은 연구자들에게 연구대상물질로 가장 각광 받고 있지만 그 합성법 및 이에 따른 분석법은 매우 제한되어 있다. 특히 분석의 핵심인 결정구조 및 원자구조 등을 탐구하기 위해서는 투과전자현미경(TEM)의 이용이 필수적이다. 최근 수차보정 기법을 이용한 투과전자현미경의 비약적인 발전으로 인해 탄소와 같이 가벼운 원소의 단원자까지 이미징해 낼 수 있는 수준에 이르고 있지만 정확한 그래핀 분석을 위해서는 전자현미경의 기본적인 이해와 분석사례 중심으로 깊이 있게 분석법을 살펴보는 것이 유용하다. 본 Tutorial에서는 전자현미경의 기본적인 이론과 최첨단 투과전자현미경의 소개, 그리고 이 투과전자현미경을 이용한 그래핀의 분석 방법과 그 사례들, 제한점등에 대해 알아본다. 그래핀의 층수분석을 위한 전자회절법, 그래핀의 결정입계 분석을 위한 전자회절, 암영상법 및 원자분해능 이미징, STEM영상 기법, 그래핀을 나노재료 분석에 지지막으로 이용하는 방법, bilayer 그래핀 등에 대해 살펴본다. 그리고 저전압에서 작동하는 저손상 단원자 분해능의 성능과 미래의 응용 가능성, 발전방향등을 전망해 본다.

  • PDF

MoS2 Layers Decorated RGO Composite Prepared by a One-Step High-Temperature Solvothermal Method as Anode for Lithium-Ion Batteries

  • Liu, Xuehua;Wang, Bingning;Liu, Jine;Kong, Zhen;Xu, Binghui;Wang, Yiqian;Li, Hongliang
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850135.1-1850135.8
    • /
    • 2018
  • A one-step high-temperature solvothermal approach to the synthesis of monolayer or bilayer $MoS_2$ anchored onto reduced graphene oxide (RGO) sheet (denoted as $MoS_2/RGO$) is described. It was found that single-layered or double-layered $MoS_2$ were synthesized directly without an extra exfoliation step and well dispersed on the surface of crumpled RGO sheets with random orientation. The prepared $MoS_2/RGO$ composites delivered a high reversible capacity of $900mAhg^{-1}$ after 200 cycles at a current density of $200mAg^{-1}$ as well as good rate capability as anode active material for lithium ion batteries. This one-step high-temperature hydrothermal strategy provides a simple, cost-effective and eco-friendly way to the fabrication of exfoliated $MoS_2$ layers deposited onto RGO sheets.

Improved Photovoltaic Performance of Inverted Polymer Solar Cells using Multi-functional Quantum-dots Monolayer

  • Moon, Byung Joon;Lee, Kyu Seung;Kim, Sang Jin;Shin, Dong Heon;Oh, Yelin;Lee, Sanghyun;Kim, Tae-Wook;Park, Min;Son, Dong Ick;Bae, Sukang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.400.1-400.1
    • /
    • 2016
  • Interfacial engineering approaches as an efficient strategy for improving the power conversion efficiencies (PCEs) of inverted polymer solar cells (iPSCs) has attracted considerable attention. Recently, polymer surface modifiers, such as poly(ethyleneimine) (PEI) and polyethylenimine ethoxylated (PEIE), were introduced to produce low WF electrodes and were reported to have good electron selectivity for inverted polymer solar cells (iPSCs) without an n-type metal oxide layer. To obtain more efficient solar cells, quantum dots (QDs) are used as effective sensitizers across a broad spectral range from visible to near IR. Additionally, they have the ability to efficiently generate multiple excitons from a single photon via a process called carrier multiplication (CM) or multiple exciton generation (MEG). However, in general, it is very difficult to prepare a bilayer structure with an organic layer and a QD interlayer through a solution process, because most solvents can dissolve and destroy the organic layer and QD interlayer. To present a more effective strategy for surpassing the limitations of traditional methods, we studied and fabricated the highly efficient iPSCs with mono-layered QDs as an effective multi-functional layer, to enhance the quantum yield caused by various effects of QDs monolayer. The mono-layered QDs play the multi-functional role as surface modifier, sub-photosensitizer and electron transport layer. Using this effective approach, we achieve the highest conversion efficiency of ~10.3% resulting from improved interfacial properties and efficient charge transfer, which is verified by various analysis tools.

  • PDF