DOI QR코드

DOI QR Code

MoS2 Layers Decorated RGO Composite Prepared by a One-Step High-Temperature Solvothermal Method as Anode for Lithium-Ion Batteries

  • Liu, Xuehua (Institute of Materials for Energy and Environment Qingdao University) ;
  • Wang, Bingning (Institute of Materials for Energy and Environment Qingdao University) ;
  • Liu, Jine (Institute of Materials for Energy and Environment Qingdao University) ;
  • Kong, Zhen (Institute of Materials for Energy and Environment Qingdao University) ;
  • Xu, Binghui (Institute of Materials for Energy and Environment Qingdao University) ;
  • Wang, Yiqian (College of Physics, Qingdao University) ;
  • Li, Hongliang (Institute of Materials for Energy and Environment Qingdao University)
  • Received : 2018.07.28
  • Accepted : 2018.10.22
  • Published : 2018.11.30

Abstract

A one-step high-temperature solvothermal approach to the synthesis of monolayer or bilayer $MoS_2$ anchored onto reduced graphene oxide (RGO) sheet (denoted as $MoS_2/RGO$) is described. It was found that single-layered or double-layered $MoS_2$ were synthesized directly without an extra exfoliation step and well dispersed on the surface of crumpled RGO sheets with random orientation. The prepared $MoS_2/RGO$ composites delivered a high reversible capacity of $900mAhg^{-1}$ after 200 cycles at a current density of $200mAg^{-1}$ as well as good rate capability as anode active material for lithium ion batteries. This one-step high-temperature hydrothermal strategy provides a simple, cost-effective and eco-friendly way to the fabrication of exfoliated $MoS_2$ layers deposited onto RGO sheets.

Keywords

References

  1. J. M. Tarascon and M. Armand, Nature 414, 359 (2001). https://doi.org/10.1038/35104644
  2. X. W. Liu, X. H. Liu, B. F. Sun, H. L. Zhou, A. P. Fu, Y. Q. Wang, Y.-G. Guo, P. Z. Guo and H. L. Li, Carbon 130, 680 (2018). https://doi.org/10.1016/j.carbon.2018.01.046
  3. B. Dunn, H. Kamath and J. M. Tarascon, Science 334, 928 (2011). https://doi.org/10.1126/science.1212741
  4. N. Ma, X. H. Liu, Z. Yang, G. Tai, Y. Yin, S. B. Liu, H. L. Li, P. Z. Guo and X. S. Zhao, ACS Sustain. Chem. Eng. 6, 1133 (2018). https://doi.org/10.1021/acssuschemeng.7b03425
  5. N. M. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y. K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho and P. G. Bruce, Angew. Chem. Int. Ed. 51, 9994 (2012). https://doi.org/10.1002/anie.201201429
  6. D. D. Liu, Z. Kong, X. H. Liu, A. P. Fu, Y. Q. Wang, Y. G. Guo, P. Z. Guo, H. L. Li and X. S. Zhao, ACS Appl. Mater. Interfaces 10, 2515 (2018). https://doi.org/10.1021/acsami.7b15916
  7. J. B. Goodenough and Y. Kim, Chem. Mater. 22, 587 (2010). https://doi.org/10.1021/cm901452z
  8. J. M. Jeong, K. G. Lee, S. J. Chang, J. W. Kim, Y. K. Han, S. J. Lee and B. G. Choi, Nanoscale 7, 324 (2015). https://doi.org/10.1039/C4NR06215A
  9. S. B. Yang, X. L. Feng, L. Wang, K. Tang, J. Maier and K. Mullen, Angew. Chem. Int. Ed. 49, 4795 (2010). https://doi.org/10.1002/anie.201001634
  10. J. Xiao, X. Wang, X. Q. Yang, S. Xun, G. Liu, P. K. Koech, J. Liu and J. P. Lemmon, Adv. Funct. Mater. 21, 2840 (2011). https://doi.org/10.1002/adfm.201002752
  11. Y. F. Chao, R. Jalili, Y. Ge, C. Y. Wang, T. Zheng, K. W. Shu and G. G. Wallace, Adv. Funct. Mater. 27, 1700234 (2017). https://doi.org/10.1002/adfm.201700234
  12. N. Savjani, E. A. Lewis, Mark A. Bissett, Jack R. Brent, Robert A. W. Dryfe, S. J. Haigh and P. O'Brien, Chem. Mater. 28, 657 (2016). https://doi.org/10.1021/acs.chemmater.5b04476
  13. L. Y. Jing, A. P. Fu, H. L. Li, J. Q. Liu, P. Z. Guo, Y. Q. Wang and X. S. Zhao, RSC Adv. 4, 59981 (2014). https://doi.org/10.1039/C4RA09079A
  14. Y. J. Gong, S. B. Yang, L. Zhan, L. L. Ma, R. Vajtai and P. M. Ajayan, Adv. Funct. Mater. 24, 125 (2014). https://doi.org/10.1002/adfm.201300844
  15. L. Ma, G. C. Huang, W. X. Chen, Z. Wang, J. B. Ye, H. Y. Li, D. Y. Chen and J. Y. Lee, J. Power Sources 264, 262 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.084
  16. H. S. S. R. Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati and C. N. R. Rao, Angew. Chem. Int. Ed. 49, 4059 (2010). https://doi.org/10.1002/anie.201000009
  17. P. Joensen, R. F. Frindt and S. Roy Morrison, Mater. Res. Bull. 21, 457 (1986). https://doi.org/10.1016/0025-5408(86)90011-5
  18. J. Zhang, H. Yu, W. Chen, X. Z. Tian, D. H. Liu, M. Cheng, G. B. Xie, W. Yang, R. Yang and X. D. Bai, ACS Nano 8, 6024 (2014). https://doi.org/10.1021/nn5020819
  19. X. S. Wang, H. B. Feng, Y. M. Wu and L. Y. Jiao, J. Am. Chem. Soc. 135, 5304 (2013). https://doi.org/10.1021/ja4013485
  20. I. Song, C. Park, M. Hong, J. Baik, H. J. Shin and H. C. Choi, Angew. Chem. Int. Ed. 126, 1290 (2014). https://doi.org/10.1002/ange.201309474
  21. M. Sevilla and A. B. Fuertes, ACS Nano 8, 5069 (2014). https://doi.org/10.1021/nn501124h
  22. S. Tyler, Z. Li, B. Olsen and D. Mitlin, Energy Environ. Sci. 7, 209 (2014). https://doi.org/10.1039/C3EE42591F
  23. J. E. Liu, A. P. Fu, Y. Q. Wang, P. Z. Guo, H. B. Feng, H. L. Li and X. S. Zhao, ChemElectroChem 4, 2027 (2017). https://doi.org/10.1002/celc.201600769
  24. J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu and J. P. Lemmon, Chem. Mater. 22, 4522 (2010). https://doi.org/10.1021/cm101254j
  25. G. Du, Z. Guo, S. Wang, R. Zeng, Z. Chen and H. Liu, Chem. Commun. 46, 1106 (2010). https://doi.org/10.1039/B920277C
  26. L. David, R. Bhandavat and G. Singh, ACS Nano 8, 1759 (2014). https://doi.org/10.1021/nn406156b
  27. B. H. Xu, X. G. Guan, L. Y. Zhang, X. W. Liu, Z. B. Jiao, X. H. Liu, X. Q. Hu and X. S. Zhao, J. Mater. Chem. A 6, 4048 (2018). https://doi.org/10.1039/C7TA10052C
  28. H. L. Zhou, D. X. Wang, A. P. Fu, X. H. Liu, Y. Q. Wang, Y. H. Li, P. Z. Guo, H. L. Li and X. S. Zhao, Mater. Sci. Eng. B 227, 9 (2018). https://doi.org/10.1016/j.mseb.2017.10.005
  29. K. Chang and W. X. Chen, ACS Nano 5, 4720 (2011). https://doi.org/10.1021/nn200659w
  30. Y. Liu, Y. Zhao, L. Jiao and J. Chen, J. Mater. Chem. A 2, 13109 (2014). https://doi.org/10.1039/C4TA01644K
  31. X. M. Zhou, P. Gao, S. C. Sun, D. Bao, Y. Wang, X. B. Li, T. T. Wu, Y. J. Chen and P. P. Yang, Chem. Mater. 27, 6730 (2015). https://doi.org/10.1021/acs.chemmater.5b02753
  32. N. Savjani, E. A. Lewis, M. A. Bissett, J. R. Brent, R. A. W. Dryfe, S. J. Haigh and P. O'Brien, Chem. Mater. 28, 657 (2016). https://doi.org/10.1021/acs.chemmater.5b04476
  33. D. X. Wang, A. P. Fu, H. L. Li, Y. Q. Wang, J. Q. Liu, P. Z. Guo and X. S. Zhao, J. Power Sources 285, 469 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.135
  34. J. W. Zhou, J. Qin, X. Zhang, C. S. Shi, E. Z. Liu, J. J. Li, N. Q. Zhao and C. N. He, ACS Nano 9, 3837 (2015). https://doi.org/10.1021/nn506850e