References
- Auwarter W, Muntwiler M, Osterwalder J, and Greber T (2003) Defect lines and two-domain structure of hexagonal boron nitride films on Ni(111). Surf. Sci. 545, 735-740. https://doi.org/10.1016/j.susc.2003.08.046
- Becton M and Wang X (2015) Grain-size dependence of mechanical properties in polycrystalline boron-nitride: a computational study. Phys. Chem. Chem. Phys. 17, 21894-21901. https://doi.org/10.1039/C5CP03460D
- Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S, and Ponomarenko L A (2012) Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947-950. https://doi.org/10.1126/science.1218461
- Brown L, Hovden R, Huang P, Wojcik M, Muller D A, and Park J (2012) Twinning and twisting of tri- and bilayer Graphene. Nano Lett. 12, 1609-1615. https://doi.org/10.1021/nl204547v
- Caneva S, Weatherup R S, Bayer B C, Brennan B, Spencer S J, Mingard K, Cabrero-Vilatela A, Baehtz C, Pollard A J, and Hofmann S (2015) Nucleation control for large, single crystalline domains of monolayer hexagonal boron nitride via Si-doped Fe catalysts. Nano Lett. 15, 1867-1875. https://doi.org/10.1021/nl5046632
- Constantinescu G, Kuc A, and Heine T (2013) Stacking in bulk and bilayer hexagonal boron nitride. Phys. Rev. Lett. 111, 036104. https://doi.org/10.1103/PhysRevLett.111.036104
- Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, and Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722-726. https://doi.org/10.1038/nnano.2010.172
- Gibb A L, Alem N, Chen J H, Erickson K J, Ciston J, Gautam A, Linck M, and Zettl A (2013) Atomic resolution imaging of grain boundary sefects in monolayer chemical vapor deposition-grown hexagonal boron nitride. J. Am. Chem. Soc. 135, 6758-6761. https://doi.org/10.1021/ja400637n
- Han J, Lee J Y, Kwon H, and Yeo J S (2014) Synthesis of waferscale hexagonal boron nitride monolayers free of aminoborane nanoparticles by chemical vapor deposition. Nanotechnology 25, 145604. https://doi.org/10.1088/0957-4484/25/14/145604
- Jang A R, Hong S, Hyun C, Yoon S I, Kim G, Jeong H Y, Shin T J, Park S O, Wong K, Kwak S K, Park N, Yu K, Choi E, Mishchenko A, Withers F, Novoselov K S, Lim H, and Shin H S (2016) Wafer-scale and wrinklefree epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett. 16, 3360-3366. https://doi.org/10.1021/acs.nanolett.6b01051
- Jin C, Lin F, Suenaga K, and Iijima S (2009) Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 102, 195505. https://doi.org/10.1103/PhysRevLett.102.195505
- Kidambi P R, Blume R, Kling J, Wagner J B, Baehtz C, Weatherup R S, Schloegl R, Bayer B C, and Hofmann S (2014) In situ observations during chemical vapor deposition of hexagonal boron nitride on polycrystalline copper. Chem. Mater. 26, 6380-6392. https://doi.org/10.1021/cm502603n
- Kim C J, Brown L, Graham M W, Hovden R, Havener R W, McEuen P L, Muller D A, and Park J (2013a) Stacking order dependent second harmonic generation and topological defects in h-BN bilayers. Nano Lett. 13, 5660-5665. https://doi.org/10.1021/nl403328s
- Kim G, Jang A R, Jeong H Y, Lee Z, Kang D J, and Shin H S (2013b) Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. Nano Lett. 13, 1834-1839. https://doi.org/10.1021/nl400559s
- Kim K K, Hsu A, Jia X, Kim S M, Shi Y, Hofmann M, Nezich D, Rodriguez-Nieva J F, Dresselhaus M S, Palacios T, and Kong J (2012) Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 12, 161-166. https://doi.org/10.1021/nl203249a
- Kim S M, Hsu A, Park M H, Chae S H, Yun S J, Lee J S, Cho D H, Fang W, Lee C, Palacios T, Dresselhaus M, Kim K K, Lee Y H, and Kong J (2015) Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat. Commun. 6, 8862. https://doi.org/10.1038/ncomms9862
- Kotakoski J, Jin C H, Lehtinen O, Suenaga K, and Krasheninnikov A V (2010) Electron knock-on damage in hexagonal boron nitride monolayers. Phys. Rev. B 82, 113404. https://doi.org/10.1103/PhysRevB.82.113404
- Laskowski R, Blaha P, and Schwarz K (2008) Bonding of hexagonal BN to transition metal surfaces: an ab initiodensity-functional theory study. Phys. Rev. B 78, 045409. https://doi.org/10.1103/PhysRevB.78.045409
- Li Q, Zou X, Liu M, Sun J, Gao Y, Qi Y, Zhou X, Yakobson B I, Zhang Y, and Liu Z (2015) Grain boundary structures and electronic properties of hexagonal boron nitride on Cu(111). Nano Lett. 15, 5804-5810. https://doi.org/10.1021/acs.nanolett.5b01852
- Liu Y, Bhowmick S, and Yakobson B I (2011) BN white graphene with "colorful" edges: the energies and morphology. Nano Lett. 11, 3113-3116. https://doi.org/10.1021/nl2011142
- Liu Y, Zou X, and Yakobson B I (2012) Dislocations and grain boundaries in two-dimensional boron nitride. ACS Nano 6, 7053-7058. https://doi.org/10.1021/nn302099q
- Lu G, Wu T, Yuan Q, Wang H, Wang H, Ding F, Xie X, and Jiang M (2015) Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy. Nat. Commun. 6, 6160. https://doi.org/10.1038/ncomms7160
- Mortazavi B, Pereira L F C, Jiang J W, and Rabczuk T (2015) Modelling heat conduction in polycrystalline hexagonal boron-nitride films. Sci. Rep. 5, 13228. https://doi.org/10.1038/srep13228
- Park H J, Ryu G H, and Lee Z (2015) Hole defects on two-dimensional materials formed by electron beam irradiation: toward nanopore devices. Appl. Microsc. 45, 107-114. https://doi.org/10.9729/AM.2015.45.3.107
- Park J H, Park J C, Yun S J, Kim H, Luong D H, Kim S M, Choi S H, Yang W, Kong J, Kim K K, and Lee Y H (2014) Large-area monolayer hexagonal boron nitride on Pt foil." ACS Nano, 8, 8520-8528. https://doi.org/10.1021/nn503140y
- Pham T, Gibb A L, Li Z, Gilbert S M, Song C, Louie S G, and Zettl A (2016) Formation and dynamics of electron-irradiation-induced defects in hexagonal boron nitride at elevated temperatures. Nano Lett. 16, 7142-7147. https://doi.org/10.1021/acs.nanolett.6b03442
- Ryu G H, Park H J, Ryou J, Park J, Lee J, Kim G, Shin H S, Bielawski C W, Ruoff R S, Hong S, and Lee Z (2015) Atomic-scale dynamics of triangular hole growth in monolayer hexagonal boron nitride under electron irradiation. Nanoscale 7, 10600-10605. https://doi.org/10.1039/C5NR01473E
- Schmidt H, Rode J C, Smirnov D, and Haug R J (2014) Superlattice structures in twisted bilayers of folded graphene. Nat. Commun. 5, 5742. https://doi.org/10.1038/ncomms6742
- Shi Y, Hamsen C, Jia X, Kim K K, Reina A, Hofmann M, Hsu A L, Zhang K, Li H, Juang Z Y, Dresselhaus M S, Li L J, and Kong J (2010) Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 10, 4134-4139. https://doi.org/10.1021/nl1023707
- Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I, and Ajayan P M (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209-3215. https://doi.org/10.1021/nl1022139
- Song X, Gao J, Nie Y, Gao T, Sun J, Ma D, Li Q, Chen Y, Jin C, Bachmatiuk A, Rummeli, M, Ding F, Zhang Y, and Liu Z (2015) Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation. Nano Res. 8, 3164-3176. https://doi.org/10.1007/s12274-015-0816-9
- Stehle Y, Meyer H M, Unocic R R, Kidder M, Polizos G, Datskos P G, Jackson R, Smirnov S N, and Vlassiouk I V (2015) Synthesis of hexagonal boron nitride monolayer: control of nucleation and crystal morphology. Chem. Mater. 27, 8041-8047. https://doi.org/10.1021/acs.chemmater.5b03607
- Tan L, Han J, Mendes R G, Rummeli M H, Liu J, Wu Q, Leng X, Zhang T, Zeng M, and Fu L (2015) Self-aligned single-crystalline hexagonal boron nitride arrays: toward higher integrated electronic devices. Adv. Electron. Mater. 1, 1500223. https://doi.org/10.1002/aelm.201500223
- Tay R Y, Griep M H, Mallick G, Tsang S H, Singh R S, Tumlin T, Teo E H T, and Karna S P (2014a) Growth of large single-crystalline twodimensional boron nitride hexagons on electropolished copper. Nano Lett. 14, 839-846. https://doi.org/10.1021/nl404207f
- Tay R Y, Li H, Tsang S H, Zhu M, Loeblein M, Jing L, Leong F N, and Teo E H T (2016a) Trimethylamine borane: A new single-source precursor for monolayer h-BN single crystals and h-BCN thin films. Chem. Mater. 28, 2180-2190. https://doi.org/10.1021/acs.chemmater.6b00114
- Tay R Y, Park H J, Ryu G H, Tan D, Tsang S H, Li H, Liu W, Teo E H T, Lee Z, Lifshitz Y, and Ruoff R S (2016b) Synthesis of aligned symmetrical multifaceted monolayer hexagonal boron nitride single crystals on resolidified copper. Nanoscale 8, 2434-2444. https://doi.org/10.1039/C5NR08036C
- Tay R Y, Wang X, Tsang S H, Loh G C, Singh R S, Li H, Mallick G, and Teo E H T (2014b) A systematic study of the atmospheric pressure growth of large-area hexagonal crystalline boron nitride film. J. Mater. Chem. C 2, 1650-1657. https://doi.org/10.1039/c3tc32011a
- Wang H, Zhang X, Meng J, Yin Z, Liu X, Zhao Y, and Zhang L (2015a) Controlled growth of few-layer hexagonal boron nitride on copper foils using ion beam sputtering deposition. Small 11, 1542-1547. https://doi.org/10.1002/smll.201402468
- Wang L, Wu B, Chen J, Liu H, Hu P, and Liu Y (2014) Monolayer hexagonal boron nitride films with large domain size and clean interface for enhancing the mobility of graphene-based field-effect transistors. Adv. Mater. 26, 1559-1564. https://doi.org/10.1002/adma.201304937
- Wang L, Wu B, Jiang L, Chen J, Li Y, Guo W, Hu P, and Liu Y (2015b) Growth and etching of monolayer hexagonal boron nitride. Adv. Mater. 27, 4858-4864. https://doi.org/10.1002/adma.201501166
- Watanabe K, Taniguchi T, Niiyama T, Miya K, and Taniguchi M (2009) Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat. Photon. 3, 591-594. https://doi.org/10.1038/nphoton.2009.167
- Wood G E, Marsden A J, Mudd J J, Walker M, Asensio M, Avila J, Chen K, Bell G R, and Wilson N R (2015) Van der Waals epitaxy of monolayer hexagonal boron nitride on copper foil: growth, crystallography and electronic band structure. 2D Mater. 2, 025003. https://doi.org/10.1088/2053-1583/2/2/025003
- Wu C, Soomro A M, Sun F, Wang H, Huang Y, Wu J, Liu C, Yang X, Gao N, Chen X, Kang J, and Cai D (2016) Large-roll growth of 25-inch hexagonal BN monolayer film for self-release buffer layer of freestanding GaN wafer. Sci. Rep. 6, 34766. https://doi.org/10.1038/srep34766
- Wu Q, Park J H, Park S, Jung S J, Suh H, Park N, Wongwiriyapan W, Lee S, Lee Y H, and Song Y J (2015) Single crystalline film of hexagonal boron nitride atomic monolayer by controlling nucleation seeds and domains. Sci. Rep. 5, 16159. https://doi.org/10.1038/srep16159
- Yin J, Liu X, Lu W, Li J, Cao Y, Li Y, Xu Y, Li X, Zhou J, Jin C, and Guo W (2015a) Aligned growth of hexagonal boron nitride monolayer on germanium. Small 11, 5375-5380. https://doi.org/10.1002/smll.201501439
- Yin J, Yu J, Li X, Li J, Zhou J, Zhang Z, and Guo W (2015b) Large singlecrystal hexagonal boron nitride monolayer domains with controlled morphology and straight merging boundaries. Small 11, 4497-4502. https://doi.org/10.1002/smll.201500210
- Zhang Z, Liu Y, Yang Y, and Yakobson B I (2016) Growth mechanism and morphology of hexagonal boron nitride. Nano Lett. 16, 1398-1403. https://doi.org/10.1021/acs.nanolett.5b04874
- Zhao R, Gao J, Liu Z, and Ding F (2015) The reconstructed edges of the hexagonal BN. Nanoscale 7, 9723-9730. https://doi.org/10.1039/C5NR02143J