DOI QR코드

DOI QR Code

Probing the Atomic Structures of Synthetic Monolayer and Bilayer Hexagonal Boron Nitride Using Electron Microscopy

  • Tay, Roland Yingjie (School of Science, Physics, RMIT University) ;
  • Lin, Jinjun (School of Electrical and Electronic Engineering, Nanyang Technological University) ;
  • Tsang, Siu Hon (Temasek Laboratories@NTU) ;
  • McCulloch, Dougal G. (School of Science, Physics, RMIT University) ;
  • Teo, Edwin Hang Tong (School of Electrical and Electronic Engineering, Nanyang Technological University)
  • Received : 2016.12.01
  • Accepted : 2016.12.14
  • Published : 2016.12.30

Abstract

Monolayer hexagonal boron nitride (h-BN) is a phenomenal two-dimensional material; most of its physical properties rival those of graphene because of their structural similarities. This intriguing material has thus spurred scientists and researchers to develop novel synthetic methods to attain scalability for enabling its practical utilization. When probing the growth behaviors and structural characteristics of h-BN, the use of appropriate characterization techniques is important. In this review, we detail the use of scanning and transmission electron microscopies to investigate the atomic configurations of monolayer and bilayer h-BN grown via chemical vapor deposition. These advanced microscopy techniques have been demonstrated to provide intimate insights to the atomic structures of h-BN, which can be interpreted directly or indirectly using known growth mechanisms and existing theoretical calculations. This review provides a collective understanding of the structural characteristics and defects of synthetic h-BN films and facilitates a better perspective toward the development of new and improved synthesis techniques.

Keywords

References

  1. Auwarter W, Muntwiler M, Osterwalder J, and Greber T (2003) Defect lines and two-domain structure of hexagonal boron nitride films on Ni(111). Surf. Sci. 545, 735-740. https://doi.org/10.1016/j.susc.2003.08.046
  2. Becton M and Wang X (2015) Grain-size dependence of mechanical properties in polycrystalline boron-nitride: a computational study. Phys. Chem. Chem. Phys. 17, 21894-21901. https://doi.org/10.1039/C5CP03460D
  3. Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S, and Ponomarenko L A (2012) Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947-950. https://doi.org/10.1126/science.1218461
  4. Brown L, Hovden R, Huang P, Wojcik M, Muller D A, and Park J (2012) Twinning and twisting of tri- and bilayer Graphene. Nano Lett. 12, 1609-1615. https://doi.org/10.1021/nl204547v
  5. Caneva S, Weatherup R S, Bayer B C, Brennan B, Spencer S J, Mingard K, Cabrero-Vilatela A, Baehtz C, Pollard A J, and Hofmann S (2015) Nucleation control for large, single crystalline domains of monolayer hexagonal boron nitride via Si-doped Fe catalysts. Nano Lett. 15, 1867-1875. https://doi.org/10.1021/nl5046632
  6. Constantinescu G, Kuc A, and Heine T (2013) Stacking in bulk and bilayer hexagonal boron nitride. Phys. Rev. Lett. 111, 036104. https://doi.org/10.1103/PhysRevLett.111.036104
  7. Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, and Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722-726. https://doi.org/10.1038/nnano.2010.172
  8. Gibb A L, Alem N, Chen J H, Erickson K J, Ciston J, Gautam A, Linck M, and Zettl A (2013) Atomic resolution imaging of grain boundary sefects in monolayer chemical vapor deposition-grown hexagonal boron nitride. J. Am. Chem. Soc. 135, 6758-6761. https://doi.org/10.1021/ja400637n
  9. Han J, Lee J Y, Kwon H, and Yeo J S (2014) Synthesis of waferscale hexagonal boron nitride monolayers free of aminoborane nanoparticles by chemical vapor deposition. Nanotechnology 25, 145604. https://doi.org/10.1088/0957-4484/25/14/145604
  10. Jang A R, Hong S, Hyun C, Yoon S I, Kim G, Jeong H Y, Shin T J, Park S O, Wong K, Kwak S K, Park N, Yu K, Choi E, Mishchenko A, Withers F, Novoselov K S, Lim H, and Shin H S (2016) Wafer-scale and wrinklefree epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett. 16, 3360-3366. https://doi.org/10.1021/acs.nanolett.6b01051
  11. Jin C, Lin F, Suenaga K, and Iijima S (2009) Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 102, 195505. https://doi.org/10.1103/PhysRevLett.102.195505
  12. Kidambi P R, Blume R, Kling J, Wagner J B, Baehtz C, Weatherup R S, Schloegl R, Bayer B C, and Hofmann S (2014) In situ observations during chemical vapor deposition of hexagonal boron nitride on polycrystalline copper. Chem. Mater. 26, 6380-6392. https://doi.org/10.1021/cm502603n
  13. Kim C J, Brown L, Graham M W, Hovden R, Havener R W, McEuen P L, Muller D A, and Park J (2013a) Stacking order dependent second harmonic generation and topological defects in h-BN bilayers. Nano Lett. 13, 5660-5665. https://doi.org/10.1021/nl403328s
  14. Kim G, Jang A R, Jeong H Y, Lee Z, Kang D J, and Shin H S (2013b) Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. Nano Lett. 13, 1834-1839. https://doi.org/10.1021/nl400559s
  15. Kim K K, Hsu A, Jia X, Kim S M, Shi Y, Hofmann M, Nezich D, Rodriguez-Nieva J F, Dresselhaus M S, Palacios T, and Kong J (2012) Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 12, 161-166. https://doi.org/10.1021/nl203249a
  16. Kim S M, Hsu A, Park M H, Chae S H, Yun S J, Lee J S, Cho D H, Fang W, Lee C, Palacios T, Dresselhaus M, Kim K K, Lee Y H, and Kong J (2015) Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat. Commun. 6, 8862. https://doi.org/10.1038/ncomms9862
  17. Kotakoski J, Jin C H, Lehtinen O, Suenaga K, and Krasheninnikov A V (2010) Electron knock-on damage in hexagonal boron nitride monolayers. Phys. Rev. B 82, 113404. https://doi.org/10.1103/PhysRevB.82.113404
  18. Laskowski R, Blaha P, and Schwarz K (2008) Bonding of hexagonal BN to transition metal surfaces: an ab initiodensity-functional theory study. Phys. Rev. B 78, 045409. https://doi.org/10.1103/PhysRevB.78.045409
  19. Li Q, Zou X, Liu M, Sun J, Gao Y, Qi Y, Zhou X, Yakobson B I, Zhang Y, and Liu Z (2015) Grain boundary structures and electronic properties of hexagonal boron nitride on Cu(111). Nano Lett. 15, 5804-5810. https://doi.org/10.1021/acs.nanolett.5b01852
  20. Liu Y, Bhowmick S, and Yakobson B I (2011) BN white graphene with "colorful" edges: the energies and morphology. Nano Lett. 11, 3113-3116. https://doi.org/10.1021/nl2011142
  21. Liu Y, Zou X, and Yakobson B I (2012) Dislocations and grain boundaries in two-dimensional boron nitride. ACS Nano 6, 7053-7058. https://doi.org/10.1021/nn302099q
  22. Lu G, Wu T, Yuan Q, Wang H, Wang H, Ding F, Xie X, and Jiang M (2015) Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy. Nat. Commun. 6, 6160. https://doi.org/10.1038/ncomms7160
  23. Mortazavi B, Pereira L F C, Jiang J W, and Rabczuk T (2015) Modelling heat conduction in polycrystalline hexagonal boron-nitride films. Sci. Rep. 5, 13228. https://doi.org/10.1038/srep13228
  24. Park H J, Ryu G H, and Lee Z (2015) Hole defects on two-dimensional materials formed by electron beam irradiation: toward nanopore devices. Appl. Microsc. 45, 107-114. https://doi.org/10.9729/AM.2015.45.3.107
  25. Park J H, Park J C, Yun S J, Kim H, Luong D H, Kim S M, Choi S H, Yang W, Kong J, Kim K K, and Lee Y H (2014) Large-area monolayer hexagonal boron nitride on Pt foil." ACS Nano, 8, 8520-8528. https://doi.org/10.1021/nn503140y
  26. Pham T, Gibb A L, Li Z, Gilbert S M, Song C, Louie S G, and Zettl A (2016) Formation and dynamics of electron-irradiation-induced defects in hexagonal boron nitride at elevated temperatures. Nano Lett. 16, 7142-7147. https://doi.org/10.1021/acs.nanolett.6b03442
  27. Ryu G H, Park H J, Ryou J, Park J, Lee J, Kim G, Shin H S, Bielawski C W, Ruoff R S, Hong S, and Lee Z (2015) Atomic-scale dynamics of triangular hole growth in monolayer hexagonal boron nitride under electron irradiation. Nanoscale 7, 10600-10605. https://doi.org/10.1039/C5NR01473E
  28. Schmidt H, Rode J C, Smirnov D, and Haug R J (2014) Superlattice structures in twisted bilayers of folded graphene. Nat. Commun. 5, 5742. https://doi.org/10.1038/ncomms6742
  29. Shi Y, Hamsen C, Jia X, Kim K K, Reina A, Hofmann M, Hsu A L, Zhang K, Li H, Juang Z Y, Dresselhaus M S, Li L J, and Kong J (2010) Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 10, 4134-4139. https://doi.org/10.1021/nl1023707
  30. Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I, and Ajayan P M (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209-3215. https://doi.org/10.1021/nl1022139
  31. Song X, Gao J, Nie Y, Gao T, Sun J, Ma D, Li Q, Chen Y, Jin C, Bachmatiuk A, Rummeli, M, Ding F, Zhang Y, and Liu Z (2015) Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation. Nano Res. 8, 3164-3176. https://doi.org/10.1007/s12274-015-0816-9
  32. Stehle Y, Meyer H M, Unocic R R, Kidder M, Polizos G, Datskos P G, Jackson R, Smirnov S N, and Vlassiouk I V (2015) Synthesis of hexagonal boron nitride monolayer: control of nucleation and crystal morphology. Chem. Mater. 27, 8041-8047. https://doi.org/10.1021/acs.chemmater.5b03607
  33. Tan L, Han J, Mendes R G, Rummeli M H, Liu J, Wu Q, Leng X, Zhang T, Zeng M, and Fu L (2015) Self-aligned single-crystalline hexagonal boron nitride arrays: toward higher integrated electronic devices. Adv. Electron. Mater. 1, 1500223. https://doi.org/10.1002/aelm.201500223
  34. Tay R Y, Griep M H, Mallick G, Tsang S H, Singh R S, Tumlin T, Teo E H T, and Karna S P (2014a) Growth of large single-crystalline twodimensional boron nitride hexagons on electropolished copper. Nano Lett. 14, 839-846. https://doi.org/10.1021/nl404207f
  35. Tay R Y, Li H, Tsang S H, Zhu M, Loeblein M, Jing L, Leong F N, and Teo E H T (2016a) Trimethylamine borane: A new single-source precursor for monolayer h-BN single crystals and h-BCN thin films. Chem. Mater. 28, 2180-2190. https://doi.org/10.1021/acs.chemmater.6b00114
  36. Tay R Y, Park H J, Ryu G H, Tan D, Tsang S H, Li H, Liu W, Teo E H T, Lee Z, Lifshitz Y, and Ruoff R S (2016b) Synthesis of aligned symmetrical multifaceted monolayer hexagonal boron nitride single crystals on resolidified copper. Nanoscale 8, 2434-2444. https://doi.org/10.1039/C5NR08036C
  37. Tay R Y, Wang X, Tsang S H, Loh G C, Singh R S, Li H, Mallick G, and Teo E H T (2014b) A systematic study of the atmospheric pressure growth of large-area hexagonal crystalline boron nitride film. J. Mater. Chem. C 2, 1650-1657. https://doi.org/10.1039/c3tc32011a
  38. Wang H, Zhang X, Meng J, Yin Z, Liu X, Zhao Y, and Zhang L (2015a) Controlled growth of few-layer hexagonal boron nitride on copper foils using ion beam sputtering deposition. Small 11, 1542-1547. https://doi.org/10.1002/smll.201402468
  39. Wang L, Wu B, Chen J, Liu H, Hu P, and Liu Y (2014) Monolayer hexagonal boron nitride films with large domain size and clean interface for enhancing the mobility of graphene-based field-effect transistors. Adv. Mater. 26, 1559-1564. https://doi.org/10.1002/adma.201304937
  40. Wang L, Wu B, Jiang L, Chen J, Li Y, Guo W, Hu P, and Liu Y (2015b) Growth and etching of monolayer hexagonal boron nitride. Adv. Mater. 27, 4858-4864. https://doi.org/10.1002/adma.201501166
  41. Watanabe K, Taniguchi T, Niiyama T, Miya K, and Taniguchi M (2009) Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat. Photon. 3, 591-594. https://doi.org/10.1038/nphoton.2009.167
  42. Wood G E, Marsden A J, Mudd J J, Walker M, Asensio M, Avila J, Chen K, Bell G R, and Wilson N R (2015) Van der Waals epitaxy of monolayer hexagonal boron nitride on copper foil: growth, crystallography and electronic band structure. 2D Mater. 2, 025003. https://doi.org/10.1088/2053-1583/2/2/025003
  43. Wu C, Soomro A M, Sun F, Wang H, Huang Y, Wu J, Liu C, Yang X, Gao N, Chen X, Kang J, and Cai D (2016) Large-roll growth of 25-inch hexagonal BN monolayer film for self-release buffer layer of freestanding GaN wafer. Sci. Rep. 6, 34766. https://doi.org/10.1038/srep34766
  44. Wu Q, Park J H, Park S, Jung S J, Suh H, Park N, Wongwiriyapan W, Lee S, Lee Y H, and Song Y J (2015) Single crystalline film of hexagonal boron nitride atomic monolayer by controlling nucleation seeds and domains. Sci. Rep. 5, 16159. https://doi.org/10.1038/srep16159
  45. Yin J, Liu X, Lu W, Li J, Cao Y, Li Y, Xu Y, Li X, Zhou J, Jin C, and Guo W (2015a) Aligned growth of hexagonal boron nitride monolayer on germanium. Small 11, 5375-5380. https://doi.org/10.1002/smll.201501439
  46. Yin J, Yu J, Li X, Li J, Zhou J, Zhang Z, and Guo W (2015b) Large singlecrystal hexagonal boron nitride monolayer domains with controlled morphology and straight merging boundaries. Small 11, 4497-4502. https://doi.org/10.1002/smll.201500210
  47. Zhang Z, Liu Y, Yang Y, and Yakobson B I (2016) Growth mechanism and morphology of hexagonal boron nitride. Nano Lett. 16, 1398-1403. https://doi.org/10.1021/acs.nanolett.5b04874
  48. Zhao R, Gao J, Liu Z, and Ding F (2015) The reconstructed edges of the hexagonal BN. Nanoscale 7, 9723-9730. https://doi.org/10.1039/C5NR02143J