• Title/Summary/Keyword: bilayer films

Search Result 104, Processing Time 0.03 seconds

Characterizatics of Composite Silicides from Co/Ni Structure (코발트/니켈 적층구조 박막으로부터 형성된 복합실리사이드)

  • Song Ohsung;Cheong Seonghwee;Kim Dugjoong;Choi Yongyun
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.769-774
    • /
    • 2004
  • 15 nm-Co/15 nm-Ni/P-Si(100)[Type I] and 15 nm-Ni/15 nm-Co/P-Si(100)(Type II) bilayer structures were annealed using a rapid thermal annealer for 40sec at $700/sim1100^{\circ}C$. The annealed bilayer structures developed into composite NiCo silicides and resulting changes in sheet resistance, composition and microstructure were investigated using Auger electron spectroscopy and transmission electron microscopy. Prepared NiCoSix films were further treated in a sequential annealing set up from $900\sim1100^{\circ}C$ with 30 minutes. The sheet resistances of NiCoSix from Type I maintained less than $7\;{\Omega}/sq$. even at the temperature of $1100{\circ}C$, while those of Type II showed about $5\;{\Omega}/sq$. with the thinner and more uniform thickness. With the additive post annealing, the sheet resistance for all the composite silicides remained small up to $900^{\circ}C$. The proposed NiCoSix films were superior over the conventional single-phased silicides and may be easily incorporated into the sub-0.1 ${\mu}m$ process.

Water vapor permeation properties of $Al_2O_3/TiO_2$ passivation layer on a poly (ether sulfon) substrate

  • Gwon, Tae-Seok;Mun, Yeon-Geon;Kim, Ung-Seon;Mun, Dae-Yong;Kim, Gyeong-Taek;Han, Dong-Seok;Sin, Sae-Yeong;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.160-160
    • /
    • 2010
  • Organic electronic devices require a passivation layer to ensure sufficient lifetime. Specifically, flexible organic electronic devices need a barrier layer that transmits less than $10^{-6}\;g/m^2/day$ of water and $10^{-5}\;g/m^2/day$ of oxygen. To increase the lifetime of organic electronic device, therefore, it is indispensable to protect the organic materials from water and oxygen. Severe groups have reported on multi-layerd barriers consisting inorganic thin films deposited by plasma enhenced chemical deposition (PECVD) or sputtering. However, it is difficult to control the formation of granular-type morphology and microscopic pinholes in PECVD and sputtering. On the contrary, atomic layer deoposition (ALD) is free of pinhole, highly uniform, conformal films and show good step coverage. In this study, the passivation layer was deposited using single-process PEALD. The passivation layer, in our case, was a bilayer system consisting of $Al_2O_3$ films and a $TiO_2$ buffer layer on a poly (ether sulfon) (PES) substrate. Because the deposition temperature and plasma power have a significant effect on the properties of the passivation layer, the characteristics of the $Al_2O_3$ films were investigated in terms of density under different deposition temperatures and plasma powers. The effect of the $TiO_2$ buffer layer also was also addressed. In addition, the water vapor transmission rate (WVTR) and organic light-emitting diode (OLEDs) lifetime were measured after forming a bilayer composed of $Al_2O_3/TiO_2$ on a PES substrate.

  • PDF

Silver Nanowire-based Stretchable and Transparent Electrodes (Silver Nanowire 기반 Stretchable 투명 전극)

  • Lee, Jin-Young;Kim, Su-Yeon;Jeong, Da-Hye;Shin, Dong-Kyun;Yoo, Su-Ho;Seo, Hwa-Il;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.51-55
    • /
    • 2015
  • We have fabricated silver nanowire (AgNW) films as a stretchable and transparent electrode on polydimethylsiloxane (PDMS) substrates using a spray coater. Inherently, they show poor surface roughness and stretchability. To tackle it, we have employed a conductive polymer, poly (3,4-ethylenedioxythiophene) : Poly(styrene sulfonate) (PEDOT : PSS). PEDTO : PSS solution is mixed with AgNWs or spin-coated on the AgNW film. Compared with AgNW film only, PEDOT : PSS film only, and polymer-mixed AgNW films, the AgNW/polymer bilayer films exhibit much better surface roughness and stretchability. It is found that spray-coating of AgNWs on uncured PDMS and spin-coating of PEDOT : PSS solution on the AgNW films enhance the surface roughness of electrodes. Such a bilayer structure also provides a stable resistance under tensile strain due to the fact that each layer acts as a detour route for carriers. With this structure, we have obtained the peak-to-peak roughness ($R_{pv}$) as low as 76.8nm and a moderate increase of sheet resistance (from $10{\Omega}/{\Box}$ under 0% strain to $30{\Omega}/{\Box}$ under 40% strain).

Probing the Atomic Structures of Synthetic Monolayer and Bilayer Hexagonal Boron Nitride Using Electron Microscopy

  • Tay, Roland Yingjie;Lin, Jinjun;Tsang, Siu Hon;McCulloch, Dougal G.;Teo, Edwin Hang Tong
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.217-226
    • /
    • 2016
  • Monolayer hexagonal boron nitride (h-BN) is a phenomenal two-dimensional material; most of its physical properties rival those of graphene because of their structural similarities. This intriguing material has thus spurred scientists and researchers to develop novel synthetic methods to attain scalability for enabling its practical utilization. When probing the growth behaviors and structural characteristics of h-BN, the use of appropriate characterization techniques is important. In this review, we detail the use of scanning and transmission electron microscopies to investigate the atomic configurations of monolayer and bilayer h-BN grown via chemical vapor deposition. These advanced microscopy techniques have been demonstrated to provide intimate insights to the atomic structures of h-BN, which can be interpreted directly or indirectly using known growth mechanisms and existing theoretical calculations. This review provides a collective understanding of the structural characteristics and defects of synthetic h-BN films and facilitates a better perspective toward the development of new and improved synthesis techniques.

Microscopic Domain Structures in NiO Exchange-coupled Films

  • Hwang, D.G.;Kim, J.K.;Kim, S.W.;Lee, S.S.;Dreyer, M.;Gomez, R.D.
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.94-97
    • /
    • 2002
  • The dependence on nickel oxide thickness and a ferromagnetic layer thickness in unidirectional and isotropic exchange-coupled NiO/NiFe(Fe) bilayer films was investigated by magnetic force microscopy to better understand the relation between magnetic domain structure and exchange biasing at microscopic length scales. As the NiO thickness increased, the domain structure of unidirectional biased films formed smaller and more complex in-plane domains. By contrast, for the isotropically coupled films, large domains generally formed with increasing NiO thickness including a cross type domain with out-of plane magnetization orientation. The density of the cross domain is proportional to exchange biasing field, and the fact that the domain mainly originated from the strongest exchange coupled region was confirmed by imaging in an applied external field during a magnetization cycle.

ZnO/ITO anode for organic electro-luminescence devices

  • Jeong, S.H.;Kho, S.;Jung, D.;Boo, J.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.885-886
    • /
    • 2003
  • A bilayer is used as an anode electrode for organic electroluminescent devices. The bilayer consist of an ultrathjn ZnO layer adjacent to an hole-transporting layer and an Indium tin oxide(ITO) outerlayer. We tried to bring low the barrier between the devices as deposited ZnO films on ITO substrates. We fabricated the organic EL structure consisted of Al as cathode, $Al_{2}O_{3}$ as electro transport layer, Alq3 as luminously layer, triphenyl diamine(TPD) as hole transport layer and ZnO(l nm )/ITO(l50 nm) as anode. The result of this experiment was not good compared with the case of using ITO, Nevertheless, at this structure we obtained the lowest turn-on voltage as the value of 19 V and the good brightness (6200 $cd/m^{2}$) of the emission light from the devices. Then the quantum efficiency was to be 1.0%.

  • PDF

Simulations of Ferromagnetic Resonance Spectra Excited in Magnetic Bilayers (이층 자성막에서 여기되는 강자성 공명신호의 모의실험)

  • 김약연;한기평;유성초
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.3
    • /
    • pp.238-246
    • /
    • 2003
  • We have performed the simulation of ferromagnetic resonance spectra on the exchange coupled bilayer thin films at perpendicular configuration. Variables considered in spectrum calculation were the interfacial exchange constants per unit area, the layer thickness, and the surface anisotropy constants. In case of antiferromagnetic coupling, variation of exchange constant gave a great effect to the absorption spectra of the low and the high magnetization layer. Variation of thickness in low magnetization layer did nt nearly influenced the resonated field of the high magnetization layer. Also, the increase of negative surface anisotropy increased the resonance field of the low and the high magnetization layer.

Co/Ti Bilayer Silicidation on the $\textrm{p}^{+}$-Si Region Implanted with High Dose of $\textrm{BF}_2$ ($\textrm{BF}_2$가 고농도로 이온주입된 $\textrm{p}^{+}$-Si 영역상에 Co/Ti 이중막 실리사이드의 형성)

  • Jang, Ji-Geun;Sin, Cheol-Sang
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.168-172
    • /
    • 1999
  • We have studied the formation of Co/Ti bilayer silicide with low resistivity and good thermal stability on the heavily boron doped $\textrm{p}^{+}$-Si region. In this paper, Co/Ti bilayer silicides were fabricated by depositing Co($150\AA$)/Ti($50\AA$) films on the clean $\textrm{p}^{+}$-Si substrates in an E-beam evaporator and performing the two step RTA process (first annealing: 650$50^{\circ}C$/20sec, second annealing: $800^{\circ}C$/20sec) in a $N_2$ambient with the pressure of $\textrm{10}^{-1}$atm. Co/Ti bilayer silicides obtained from our experiments exhibited the low resistivity of about $18\mu\Omega$-cm and the uniform thickness of about $500\AA$ without change of sheet resistance and agglomeration under the long post0annealing time up to $1000^{\circ}C$.

  • PDF

Characterization of Non-vacuum CuInSe2 Solar Cells Deposited on Bilayer Molybdenum (이중층 몰리브데늄을 후면전극으로 적용한 비진공법 CuInSe2 태양전지의 특성)

  • Hwang, Ji Sub;Yun, Hee-Sun;Jang, Yoon Hee;Lee, Jang mi;Lee, Doh-Kwon
    • Current Photovoltaic Research
    • /
    • v.8 no.2
    • /
    • pp.45-49
    • /
    • 2020
  • Molybdenum (Mo) thin films are widely used as back contact in copper indium diselenide (CISe) solar cells. However, despite this, there are only few published studies on the properties of Mo and characteristics of CISe solar cells formed on such Mo substrates. In this studies, we investigated the properties of sputter deposited Mo bilayer, and fabricated non-vacuum CISe solar cells using bilayer Mo substrates. The changes in surface morphology and electrical resistivity were traced by varying the gas pressure during deposition of the bottom Mo layer. In porous surface structure, it was confirmed that the electrical resistivity of Mo bilayer was increased as the amount of oxygen bonded to the Mo atoms increased. The resulting solar cell characteristics vary as the bottom Mo layer deposition pressure, and the maximum solar cell efficiency was achieved when the bottom layer was deposited at 7 mTorr with a thickness of 100 nm and the top layer deposited at 3 mTorr with a thickness of 400 nm.

Fabrication of Stretchable Ag Nanowire Electrode and its Electrochromic Application (신축성있는 Ag 나노와이어 전극의 제조 및 전기변색 응용)

  • Lee, Jin-Young;Han, Song-Yi;Nah, Yoon-Chae;Park, Jongwoon
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.87-91
    • /
    • 2019
  • We report on stretchable electrochromic films of poly(3-hexylthiophene) (P3HT) fabricated on silver nanowire (AgNW) electrodes. AgNWs electrodes are prepared on polydimethylsiloxane (PDMS) substrates using a spray coater for stretchable electrochromic applications. On top of the AgNW electrode, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is introduced to ensure a stable resistance over the electrode under broad strain range by effectively suppressing the protrusion of AgNWs from PDMS. This bilayer electrode exhibits a high performance as a stretchable substrate in terms of sheet resistance increment by a factor of 1.6, tensile strain change to 40 %, and stretching cycles to 100 cycles. Furthermore, P3HT film spin-coated on the bilayer electrode shows a stable electrochromic coloration within an applied voltage, with a color contrast of 28.6 %, response time of 4-5 sec, and a coloration efficiency of $91.0cm^2/C$. These findings indicate that AgNWs/PEDOT:PSS bilayer on PDMS substrate electrode is highly suitable for transparent and stretchable electrochromic devices.