• Title/Summary/Keyword: bilateral generating functions

Search Result 8, Processing Time 0.014 seconds

SOME BILATERAL GENERATING FUNCTIONS INVOLVING THE CHAN-CHYAN-SRIVASTAVA POLYNOMIALS AND SOME GENERAL CLASSES OF MULTIVARIABLE POLYNOMIALS

  • Gaboury, Sebastien;Ozarslan, Mehmet Ali;Tremblay, Richard
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.783-797
    • /
    • 2013
  • Recently, Liu et al. [Bilateral generating functions for the Chan-Chyan-Srivastava polynomials and the generalized Lauricella function, Integral Transform Spec. Funct. 23 (2012), no. 7, 539-549] investigated, in several interesting papers, some various families of bilateral generating functions involving the Chan-Chyan-Srivastava polynomials. The aim of this present paper is to obtain some bilateral generating functions involving the Chan-Chyan-Sriavastava polynomials and three general classes of multivariable polynomials introduced earlier by Srivastava in [A contour integral involving Fox's H-function, Indian J. Math. 14 (1972), 1-6], [A multilinear generating function for the Konhauser sets of biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math. 117 (1985), 183-191] and by Kaano$\breve{g}$lu and $\ddot{O}$zarslan in [Two-sided generating functions for certain class of r-variable polynomials, Mathematical and Computer Modelling 54 (2011), 625-631]. Special cases involving the (Srivastava-Daoust) generalized Lauricella functions are also given.

OPERATIONAL CALCULUS ASSOCIATED WITH CERTAIN FAMILIES OF GENERATING FUNCTIONS

  • KHAN, REHANA;KHAN, SUBUHI
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.429-438
    • /
    • 2015
  • In this paper, we discuss how the operational calculus can be exploited to the theory of mixed generating functions. We use operational methods associated with multi-variable Hermite polynomials, Laguerre polynomials and Bessels functions to drive identities useful in electromagnetism, fluid mechanics etc. Certain special cases giving bilateral generating relations related to these special functions are also discussed.

GENERATING FUNCTIONS FOR THE EXTENDED WRIGHT TYPE HYPERGEOMETRIC FUNCTION

  • Jana, Ranjan Kumar;Maheshwari, Bhumika;Shukla, Ajay Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.75-84
    • /
    • 2017
  • In recent years, several interesting families of generating functions for various classes of hypergeometric functions were investigated systematically. In the present paper, we introduce a new family of extended Wright type hypergeometric function and obtain several classes of generating relations for this extended Wright type hypergeometric function.

CERTAIN GENERALIZED AND MIXED TYPE GENERATING RELATIONS: AN OPERATIONAL APPROACH

  • Khan, Rehana;Kumar, Naresh;Qamar, Ruma
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.473-484
    • /
    • 2018
  • In this paper, we discuss how the operational calculus can be exploited to the theory of generalized special functions of many variables and many indices. We obtained the generating relations for 3-index, 3-variable and 1-parameter Hermite polynomials. Some mixed type generating relations and bilateral generating relations of many indices and many variable like Lagurre-Hermite and Hermite-Sister Celine's polynomials are also obtained. Further we generalize some results on old symbolic notations using operational identities.

Some Generating Relations of Extended Mittag-Leffler Functions

  • Khan, Nabiullah;Ghayasuddin, Mohd;Shadab, Mohd
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.2
    • /
    • pp.325-333
    • /
    • 2019
  • Motivated by the results on generating functions investigated by H. Exton and many other authors, we derive certain (presumably) new generating functions for generalized Mittag-Leffler-type functions. Specifically, we introduce a new class of generating relations (which are partly bilateral and partly unilateral) involving the generalized Mittag-Leffler function. Also we present some special cases of our main result.

Some Theorems on Generating Functions

  • Pathan, Mahmood Ahmad;Shahwan, Mohannad Jamal S.
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.373-380
    • /
    • 2007
  • In this paper, we derive some generating relations involving Konhauser polynomials, Gauss, Humbert, Appell and Kamp$\acute{e}$ de F$\acute{e}$riet hypergeometric functions with the help of four general theorems on generating functions (partly unilateral and partly bilateral) of one and two variables.

  • PDF

A Class of Bilateral Generating Functions for the Jacobi Polynomial

  • SRIVASTAVA, H M.
    • Journal of the Korean Mathematical Society
    • /
    • v.8 no.1
    • /
    • pp.25-30
    • /
    • 1971
  • Put ($$^*$$) $$G[x,y]={\sum}\limits^{p+q=n}_{p,q=0}[-n]_{p+q}c_{p,q}x^py^q$$, where $[{\lambda}]_m$ is the Pocbhammer symbol and the $c_{p,q}$ are arbitrary constants. Making use of the specialized forms of some of his earlier results (see [8] and [9] the author derives here bilateral generating functions of the type ($$^{**}$$) $${\sum}\limits^{\infty}_{n=0}{\frac{[\lambda]_n}{n!}}_2F_1[\array{{\rho}-n,\;{\alpha};\\{\lambda}+{\rho};}x]\;G[y,z]t^n$$ where ${\alpha}$, ${\rho}$ and ${\lambda}$ are arbitrary complex numbers. In particular, it is shown that when G[y, z] is a double hypergeometric polynomial, the right-band member of ($^{**}$) belongs to a class of general triple hypergeometric functions introduced by the author [7]. An interesting special case of ($^{**}$) when ${\rho}=-m,\;m$ being a nonnegative integer, yields a class of bilateral generating functions for the Jacobi polynomials $\{P_n{^{{\alpha},{\beta}}}(x)\}$ in the form ($$^{***}$$) $${\sum\limits^{\infty}_{n=0}}\(\array{m+n\\n}\)P{^{({\alpha}-n,{\beta}-n)}_{m+n}(x)\;G[y,z]{\frac{t^n}{n!}}$$, which provides a unification of several known results. Further extensions of ($^{**}$) and ($^{***}$) with G[y, z] replaced by an analogous multiple sum $H\[y_1,{\cdots},y_m\]$ are also discussed.

  • PDF