• Title/Summary/Keyword: biaxial tension

Search Result 69, Processing Time 0.024 seconds

A Study on the Equi-Biaxial Tensile Workability for the SPC 3 EN Automobile Killed Steel Sheets (승용차용 SPC 3 EN 킬드 강판의 등 2축 인장 가공성에 관한 연구)

  • 김동원;서대교;김형종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.645-652
    • /
    • 1986
  • For the analysis of equi-biaxial tension, the Lankford values at the various strain levels were measured experimentally at first. It was clarified that the R values depend on strain to a great extent and based on this result, the analysis of the equi-biaxial tension was carried out. Hill's new yield criterion was used to predict the stress-strain curves theoretically. The value of new parameter, m for the coincidence of the theory with the experiment was 2.1. It is desired that the optimum R-value in the case of m=2.1 is measured at strain, 15% for the reasonable correlation between theory and experiment.

Biaxial creep property of ethylene tetrafluoroethylene (ETFE) foil

  • Li, Yintang;Wu, Minger
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.973-986
    • /
    • 2015
  • Ethylene tetrafluoroethylene (ETFE) foil is a novel structural material which has being used in shell and spatial structures. This paper studies biaxial creep property of ETFE foil by creep tests and numerical simulation. Biaxial creep tests of cruciform specimens were performed using three stress ratios, 1:1, 2:1 and 1:2, which showed that creep coefficients in biaxial tension were much smaller than those in uniaxial one. Then, a reduction factor was introduced to take account of this biaxial effect, and relation between the reduction factor and stress ratio was established. Circular bubble creep test and triangle cushion creep test of ETFE foil were performed to verify the relation. Interpolation was adopted to consider creep stress and reduction factor was involved to take account of biaxial effect in numerical simulation. Simulation results of the bubble creep test embraced a good agreement with those measuring ones. In triangle cushion creep test, creep displacements from numerical simulation showed a good agreement with those from creep test at the center and lower foil measuring points.

FEM Analysis of alternatively laminated structure constructed of rubber and reinforced aluminium layers (고무 알루미늄 적층 구조물의 유한요소 해석)

  • Park, Sung-Han;Lee, Bang-Up;Hong, Myung-Pyo;Ryu, Back-Reung
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.402-406
    • /
    • 2000
  • Strain energy function of the isoprene rubber was accurately determined by the experiments of uniaxial tension, planar tension, biaxial tension and volumetric compression. Deformation behavior of alternatively laminated structure of elastomer and reinforced aluminium layers, was analysed by Finite Element method. As a result, Ogden strain energy function obtained from the experiments describes the hyperelastic characteristics of the rubber very well. The compressibility of the rubber reduces axial stiffness of the structure. The axial stiffness of alternatively laminated structure being larger than shear stiffness. Which enables the structure to be shear-deformed easily.

  • PDF

Nonlinear FE Analysis of Reinforced Concrete Panels subjected to Biaxial Tensile Loads (이축인장하중을 받는 철근콘크리트 패널의 비선형 유한요소해석)

  • 이상진;이영정;전영선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.153-160
    • /
    • 2003
  • Nonlinear finite element analysis of reinforced concrete panels subjected to biaxial tensile loads are carried out by using a 9-node assumed strain shell element. The present study mainly focuses on the performance evaluation of material models such as cracking criteria, tension stiffening model and steel model in the membrane energy dominant situation. From numerical results, the exponential form of tension stiffening model together with the use of average yield stress model for the steel embedded in the concrete performs well in the panel analysis under biaxial tensile loading condition and it produces a good agreement with experiment results. Finally, the present results are provided as a benchmark test for reinforced concrete panel structures.

  • PDF

Constitutive Law of Reinforced Concrete Subjected to Biaxial Tension (2축 인장을 받는 철근콘크리트의 구성방정식)

  • Cho, Jae-Yeol;Kim, Nam-Sik;Cho, Nam-So;Choun, Young-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.69-77
    • /
    • 2003
  • One directional and biaxial tension tests of 13 reinforced concrete panels were conducted to derive a constitutive law of concrete. Based on the test results, a model equation is derived for the stress-strain relationship of concrete in tension. Main test variables are reinforcement ratio and the load ratio applied in two directions. In addition a failure envelope of concrete in tension-tension region is suggested based on the initial crack occurrence. Test results show that the concrete carries substantial tensile stress even after cracking occurrence. However, the application of this proposed stress-strain relationship for concrete is limited to the case where the direction of reinforcement coincides with the direction of the applied principal stresses.

Behavior of Fatigue Crack Initiation and Growth in SM45C Steel under Biaxial Loading (이축하중을 받는 SM45C강의 피로균열의 발생과 성장거동)

  • KIM SANG-TAE;PARK SUN-HONG;KWUN SOOK-IN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.84-90
    • /
    • 2004
  • Fatigue tests were conducted on SM45C steel using hour-glass shaped smooth tubular specimen under biaxial loading in order to investigate the crack formation and growth at room temperature. Three types of loading systems, were employed fully-reserved cyclic torsion without a superimposed static tension or compression fully-reserved cyclic torsion with a superimposed static tension and fully-reserved cyclic torsion with a superimposed static compression. The test results showed that a superimposed static tensile mean stress reduced fatigue life however a superimposed static compressive mean stress increased fatigue life. Experimental results indicated that cracks were initiated on planes of maximum shear strain whether or not the mean stresses were superimposed. A biaxial mean stress had an effect on the direction that the cracks nucleated and propagated at stage 1 (mode II).

Cracking Behavior of RC Panel Subjected to Biaxial Tension (2축 인장을 받는 철근콘크리트 패널의 균열 거동)

  • 조재열;조남소;구은숙;김남식;전영선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.475-480
    • /
    • 2002
  • Tension tests of six half-thickness concrete containment wall elements were conducted as part of a Korea Atomic Energy Research Institute (KARRI) program. The aim of the KAERI test program is providing a test-verified analytical method for estimating capacities of concrete reactor containment buildings under internal overpressurization from postulated degraded core accidents. The data from the tests reported herein should be useful for benchmarking method that requires modeling of material behavior including concrete cracking and reinforcement/concrete interaction exhibited by the test. Major test variable is the compressive strength of concrete and its effect on the behavior of prestressed concrete panel subjected to biaxial tension.

  • PDF

Failure Behavior of High Strength Concrete under Uniaxial and Biaxial Compression (고강도 콘크리트의 일축 및 이축 압축하의 파괴거동)

  • Lee, Sang-Kuen;Song, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.223-231
    • /
    • 2002
  • The pilot tests for the development of biaxial failure envelope of high strength concrete of reactor containments were performed. To apply biaxial loads to concrete, the plate specimens were used. The technical difficulties encountered on the development of a suitable biaxial test setup were discussed. To decide the optimum thickness of plate specimen, the nonlinear finite element analyses using ABAQUS were performed for a 1/8 model of cylindrical specimen(${\Phi}150{\times}300$) and four 1/4 models of plate Specimens ($200{\times}200{\times}T$(=30, 50, 60, 70)mm) under uniaxial compression. Analytical values and test data of relative strength ratio between those specimens with different geometric shapes were also compared. The various test data were obtained under uniaxial compression, uniaxial tension, and biaxial compression and then the stress-strain responses were plotted. The test data indicated that the strength of concrete under biaxial compression, $f_1/f_2=-1/-1$, is 15 percent larger than that under uniaxial compression and the poisson's ratio of concrete is 0.16. Teflon pads employed to eliminate friction between test specimen and loading platens showed an excellent effect under biaxial compression.

An Experimental Study on Biaxial Tensile Characteristics of ETFE Film and Stress Relaxation of Tension Typed Membrane Structures (ETFE 필름의 2축 인장특성 및 텐션방식 막구조물의 응력완화 거동에 관한 실험적 연구)

  • Kim, Seung-Deog;Jeong, Eul-Seok;Kawabata, Masaya
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Until recently, almost all ETFE film structures that have been erected is the cushion type because there are problems at lower allowable strength under elastic range and viscosity behaviour such as creep and relaxation of ETFE films under long-term stresses. But the number of tension type structures is currently increasing. This paper proposes the stretch fabrication of ETFE film to verify the applicability of ETFE films to tensile membrane structures. First of all, to investigate the possibility of application on tensile membrane structures, the stretch fabrication test is carried out, and it is verified that it is possible to increase the yield strength of the film membrane structures. After simulating the experiment also carries out an analytical investigation, and the effectiveness of the elasto-plastic analysis considering the viscous behavior of the film is investigated. Finally, post-aging tension measurement is conducted at the experimental facilities, and the viscosity behavior resulting from relaxation is investigated with respect to tensile membrane structures.