• Title/Summary/Keyword: biaxial compression

Search Result 96, Processing Time 0.023 seconds

Stress-Strain Response and Fracture of a Plain Concrete in Biaxial Loading (이축 하중을 받는 콘크리트의 응력-변형률 응답 및 파괴)

  • 이상근;송영철;권용길;한상훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.921-926
    • /
    • 2001
  • In this paper the biaxial failure criteria and stress-strain response for plain concrete are studied under uniaxial and biaxial stress(compression-compression, compression-tension, and tension-tension combined stress). The concrete specimens of a square plate type are used for uniaxial and biaxial loading. The experimental data indicate that the strength of concrete under biaxial compression, f2/fl=-l/-1, is 17 percent larger than under uniaxial compression and the poisson's ratio of concrete is 0.1745. On the base of the results, a biaxial failure envelope for plain concrete that the uniaxial strength is 398kgf/$cm^{2}$ are developed. The biaxial failure behaviors for three biaxial loading areas are also plotted respectively. In addition, the characteristics of stress-strain response under biaxial compression are compared and verified with the experimental and analytical results.

  • PDF

Failure Behavior of High Strength Concrete under Uniaxial and Biaxial Compression (고강도 콘크리트의 일축 및 이축 압축하의 파괴거동)

  • Lee, Sang-Kuen;Song, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.223-231
    • /
    • 2002
  • The pilot tests for the development of biaxial failure envelope of high strength concrete of reactor containments were performed. To apply biaxial loads to concrete, the plate specimens were used. The technical difficulties encountered on the development of a suitable biaxial test setup were discussed. To decide the optimum thickness of plate specimen, the nonlinear finite element analyses using ABAQUS were performed for a 1/8 model of cylindrical specimen(${\Phi}150{\times}300$) and four 1/4 models of plate Specimens ($200{\times}200{\times}T$(=30, 50, 60, 70)mm) under uniaxial compression. Analytical values and test data of relative strength ratio between those specimens with different geometric shapes were also compared. The various test data were obtained under uniaxial compression, uniaxial tension, and biaxial compression and then the stress-strain responses were plotted. The test data indicated that the strength of concrete under biaxial compression, $f_1/f_2=-1/-1$, is 15 percent larger than that under uniaxial compression and the poisson's ratio of concrete is 0.16. Teflon pads employed to eliminate friction between test specimen and loading platens showed an excellent effect under biaxial compression.

Experimental Study on Failure Behavior of Plain Concrete - Biaxial Stress Test (콘크리트 파괴거동특성의 실험적 연구I-이축응력시험)

  • 이상근;이상민;박상순;한상훈;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.315-320
    • /
    • 2003
  • Two different strength types of plain concrete plate specimens (200$\times$200$\times$60mm) were tested under different biaxial load combinations. The specimens were subjected to biaxial combinations covering the three regions of compression-compression, compression-tension, and tension-tension. The loading platens with Teflon pads were used to reduce a confining effect in boundary surface between the concrete specimen and the solid platen. The principal deformations in the specimens were recorded, and the failure modes along with each stress ratio were examined. Based on the strength data, the failure envelops were developed for each type of plain concrete. The biaxial stress-strain responses of concrete plate specimens for three biaxial loading regions were also plotted. The test data indicated that the strength of concrete under biaxial compression ($f_2 / f_1$$_1$=-1/-1) is about 17 percent larger than under uniaxial compression.

  • PDF

A Study on the Equi-biaxial Tension Test of Rubber Material (고무재료의 등 이축 인장시험에 관한 연구)

  • 김완두;김동진;김완수;이영신
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.95-104
    • /
    • 2003
  • The material properties of rubber was determined by the experiments of uniaxial tension, uniaxial compression, planer tension, equi-biaxial tension and volumetric compression. In compression test, it is difficult to obtain the pure state of compression stress and strain due to friction force between the specimen and compression platen. In this study, the stress and strain data from the equi-biaxial tension test were converted to compression stress and strain and compared to a pure state of simple compression data when friction was zero. The compression test device with the tapered platen was proposed to overcome the effect of friction. It was fumed out that the relationship of the stress and strain using the tapered platen was in close agreement with the pure compressive state.

A Study on the Equi-biaxial Tension Test of Rubber Material (고무재료의 이축 인장시험에 관한 연구)

  • Kim, Dong-Jin;Kim, Wan-Doo;Kim, Wan-Soo;Lee, Young-Shin
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.425-430
    • /
    • 2003
  • The material properties of rubber was determined by the experiments of uniaxial tension, uniaxial compression, planer tension, equi-biaxial tension and volumetric compression. In compression test, it is difficult to obtain the pure state of compression stress and strain due to friction force between the specimen and compression platen. In this study, the stress and strain data from the equi-biaxial tension test were converted to compression stress and strain and compared to a perfect state of simple compression data when friction was zero. The compression test device with the tapered platen was proposed to overcome the effect of friction. It was turned out that the relationship of the stress and strain using the tapered platen was in close agreement with the pure compressive state.

  • PDF

Experimental research on masonry mechanics and failure under biaxial compression

  • Xin, Ren;Yao, Jitao;Zhao, Yan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.161-169
    • /
    • 2017
  • This study aimed to develop a simple and effective method to facilitate the experimental research on mechanical properties of masonry under biaxial compressive stress. A series of tests on full-scale brick masonry panels under biaxial compression have been performed in limited principal stress ratios oriented at various angles to the bed joints. Failure modes of tested panels were observed and failure features were analyzed to reveal the mechanical behavior of masonry under biaxial compression. Based on the experimental data, the failure curve in terms of two orthotropic principal stresses has been presented and the failure criterion of brick masonry in the form of the tensor polynomial has been established, which indicate that the anisotropy for masonry is closely related to the difference of applied stress as well as the orientation of bed joints. Further, compared with previous failure curves and criteria for masonry, it can be found that the relative strength of mortar and block has a considerable effect on the degree of anisotropy for masonry. The test results demonstrate the validity of the proposed experimental method for the approximation of masonry failure under biaxial compressive stress and provide valuable information used to establish experimentally based methodologies for the improvement of masonry failure criteria.

An Experimental Study of Square High Strength Concrete Column Sections under Axial Compression and Biaxial Bending (축력과 이축휨을 받는 정사각형 단면의 고강도 콘크리트 기둥에 대한 실험적 연구)

  • 조문희;이종원;한경돈;유석형;반병열;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.35-40
    • /
    • 2001
  • The exact solution of strength of reinforced concrete RC columns subjected to axial compression combined with biaxial bending needs trial and adjustment procedure to find the depth and inclination of the neutral axis. Thus, approximate methods of analysis and design for biaxial bending are used in practice. Load contour interprets the relation of biaxial bending and equivalent uniaxial bending by u factor which is related to material properties and column shapes. The purpose of this study is to investigate the behavior of high strength RC columns subjected to the combined axial compression and biaxial bending. Fifteen test specimens with dimensions of 200mm$\times$200mm and 4-Dl3 longitudinal steel were examined. The variable of the test is compressive strength of concrete (350, 585, 650kgf/$cm^{2}$), compression load ratio (0.2$P_{o}}$, 0.35$P_{o}}$, 0.5$P_{o}}$), and inclination of loading ($\theta$=0, 22.5, $45^{\circ}$). Test results of coefficient $\alpha$ depending on the compressive strength of concrete are compared with ACI code.

  • PDF

Behavior of Plain and Steel Fiber Reinforced High Strengh Concrete Under Uniaxial and Biaxial Compression (1축 및 2축 압축을 받는 고강도콘크리트 및 강섬유보강 고강도콘크리트의 거동)

  • Lim, Dong-Hwan;Park, Sung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.5-8
    • /
    • 2005
  • The purpose of this study is to investigate the mechanical characteristics of plain and steel fiber high strength concrete under uniaxial and biaxial loading condition. A number of plain and steel fiber high strength concrete cubes having 28 days compressive strength of 82.7Mpa (12,000psi) were made and tested. Four principal compression stress ratios, and four fiber concentrations were selected as major test variables. From test results, it is shown that confinement stress in minor stress direction has pronounced effect on the strength and deformational behavior. Both of the stiffness and ultimate strength of the plain and fiber high strength concrete increased. The maximum increase of ultimate strength occurred at biaxial stress ratio of 0.5 in the plain high strength concrete and the value were recorded 30 percent over than the strength under uniaxial condition. The failure modes of plain high strength concrete under uniaxial compression were shown as splitting type of failure but steel fiber concrete specimens under biaxial condition showed shear type failure.

  • PDF

Analysis and Design of Arbitrarily Shaped RC Slender Columns in biaxial bending and Compression (2축 휨과 압축을 받는 임의 단면 철근 콘크리트 장주의 해석 및 설계)

  • 진치섭;노경배;이승훈;하민규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.247-252
    • /
    • 2000
  • The practical computer program COL3 was developed through this study to design of arbitrarily shaped reinforced concrete slender columns subjected to combined compression and biaxial bending. The program COL3 has been developed for user-friendly environment using spreadsheets. Several examples including for analysis of geometrically complex column sections subjected biaxial bending are introduced in this paper.

  • PDF

Analysis and Design of RC Short Columns in biaxial bending and Compression using Spreadsheets (스프레드시트를 이용한 2축 휨과 압축을 받는 철근 콘크리트 단주의 해석 및 설계)

  • 진치섭;엄장섭;노경배;박현재;이승훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.627-632
    • /
    • 1998
  • This study developed practical computer program COL2 to design of generic shape reinforced concrete short columns subjected to combined compression and biaxial bending. The program COL2 has been developed for user-friendly environment using Excel 97 for windows 95. Several examples including for analysis of geometrically complex column sections subjected biaxial bending are included in this paper.

  • PDF