• Title/Summary/Keyword: bias voltage

Search Result 1,264, Processing Time 0.032 seconds

The Effect of Substrate Bias Voltage during the Formation of BN film by R. F. Sputtering Method (RF 스퍼터링법에 의한 BN박막 증착시 기판 바이어스전압의 영향에 관한 연구)

  • 이은국;김도훈
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.2
    • /
    • pp.93-99
    • /
    • 1996
  • In this work BN thin films were deposited on Si substrate by R. F. sputtering method at $200^{\circ}C$ and in Ar + $N_2$ mixed gas atmosphere. In order to investigate the effect of ion bombardment on substrate for c-BN bonding, substrate bias voltage was applied. The optimum substrate bias voltage for c-BN bonding was determined by FTIR analysis on specimens which were deposited with various bias voltages. Then BN thin film was deposited with this optimum condition and its phase, morphology, chemical composition, and refractive index were compared with those of BN film which was deposited without bias voltage. FTIR results showed that BN films deposited with substrate bias voltage were composed of mixed phases of c-BN and h-BN, while those deposited without bias voltage were h-BN only. When pure Ar gas was used for sputtering gas, BN films were delaminated easily from substrate in air, while when 10% $N_2$ gas was added to the sputtering gas, although c-BN specific infrared peak was reduced, delamination did not occur. GXRD and TEM results showed that BN films were amorphous phases regardless of substrate bias voltage, and AES results showed that the chemical compositions of B/N were about 1.7~1.8. The refractive index of BN film deposited with bias voltage was higher than that without bias voltage. The reason is believed to be the existence of c-BN bonding in BN film and the higher density of film that deposited with the substrate bias voltage.

  • PDF

Threshold Voltage Dependence on Bias for FinFET using Analytical Potential Model

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.107-111
    • /
    • 2010
  • This paper has presented the dependence of the threshold voltage on back gate bias and drain voltage for FinFET. The FinFET has three gates such as the front gate, side and back gate. Threshold voltage is defined as the front gate bias when drain current is 1 micro ampere as the onset of the turn-on condition. In this paper threshold voltage is investigated into the analytical potential model derived from three dimensional Poisson's equation with the variation of the back gate bias and drain voltage. The threshold voltage of a transistor is one of the key parameters in the design of CMOS circuits. The threshold voltage, which described the degree of short channel effects, has been extensively investigated. As known from the down scaling rules, the threshold voltage has been presented in the case that drain voltage is the 1.0V above, which is set as the maximum supply voltage, and the drain induced barrier lowing(DIBL), drain bias dependent threshold voltage, is obtained using this model.

Influence of negative bias voltage on the microstructure of Cr-Si-N films deposited by a hybrid system of AIP plus MS (Negative bias voltage effect에 따른 Cr-Si-N 박막의 미세구조에 대한 연구)

  • Sin, Jeong-Ho;Kim, Gwang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.130-131
    • /
    • 2009
  • AIP(arc ion plating)방법과 마그네슘 스퍼터링(DC reactive magnetron sputtering) 방법을 결합시킨 하이브리드 코팅 시스템으로 Cr-Si-N 코팅막을 합성하였다. 고분해능 TEM 및 SEM 분석들로부터 negative bias voltage에 따른 미세구조의 영향을 나타내었다. negative bias voltage의 증가에 따라 columnar microstructure가 amorphous microstructure로 변화하였다. bias voltage effect에 의해 Cr-Si-N 코팅막내 입자의 크기가 미세해지고 나노 복합체를 잘 형성하였다.

  • PDF

Control the growth direction of carbon nanofibers under direct current bias voltage applied microwave plasma enhanced chemical vapor deposition system

  • Kim Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.5
    • /
    • pp.198-201
    • /
    • 2005
  • Carbon nanofibers were formed on silicon substrate which was applied by negative direct current (DC) bias voltage using microwave plasma-enhanced chemical vapor deposition method. Formation of carbon nanofibers were varied according to the variation of the applied bias voltage. At -250 V, we found that the growth direction of carbon nanofibers followed the applied direction of the bias voltage. Based on these results, we suggest one of the possible techniques to control the growth direction of the carbon nanofibers.

Influence of negative bias voltage on the microstructure of CrN films deposited by arc ion plating (Negative bias voltage effect에 따른 CrN 박막의 미세구조에 대한 연구)

  • Sin, Jeong-Ho;Kim, Kwang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.159-160
    • /
    • 2009
  • AIP(arc ion plating)방법으로 CrN 코팅막을 합성하였다. 고분해능 SEM과 AFM 분석들로부터 negative bias voltage에 따른 미세구조의 영향을 나타내었다. negative bias voltage의 증가에 따라 columnar microstructure가 amorphous microstructure로 변화하였다. bias voltage effect에 의해 CrN 코팅막내 입자의 크기가 미세해지고 나노 복합체를 잘 형성하였다.

  • PDF

Electrical and Optical Properties of ITO Films Sputtered by RF -bias Voltage and In-Sn Alloy Target

  • Kim, Hyun-Hoo;Shin, Sung-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.4
    • /
    • pp.153-157
    • /
    • 2004
  • ITO thin films were deposited on PET and soda-lime glass substrates by a dc reactive magnetron sputtering of In-Sn alloy metal target without substrate heater and post-deposition thermal treatment. The dependency of rf-bias voltage and substrate power during deposition processing was investigated to control the electrical and optical properties of ITO films. The range of rf bias voltage is from 0 to -80 V and the substrate power is applied from 10 to 50 W. The minimum resistivity of ITO film is 5.4${\times}$10$^{-4}$ $\Omega$cm at 50 W power and rf-bias voltage of -20 V. The best transmittance of ITO films at 550 nm wavelength is 91 % in the substrate power of 30 W and rf-bias voltage of -80 V.

Electroluminescent Characteristics of Fluorescent OLED with Alternating Current Forward Bias (교류 순방향 바이어스에 따른 형광 OLED의 전계 발광 특성)

  • Seo, Jung-Hyun;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.398-404
    • /
    • 2017
  • In order to study the AC driving mechanism for OLED lighting, the fluorescent OLEDs were fabricated and the electroluminescent characteristics of the OLEDs by AC forward bias were analyzed. In the case of the driving method of OLED by AC forward bias under the same voltage and the same current density, degradation of luminescent characteristics for elapsed time progressed faster than in the case of the driving method by DC bias. These phenomena were caused by the peak voltage of AC forward bias which is ${\sqrt{2}}$ times higher than the DC voltage. In addition, the degradation of the OLED was accelerated because the AC forward bias had come close to the upper limit of the allowable voltage range even though the peak voltage didn't exceed the allowable range of the OLED. However, the fabricated fluorescent OLED showed little degradation of OLED characteristics due to AC forward bias from 0 V to 6.04 V. Therefore, OLED lighting by AC driving will become commercialized if sufficient luminance is realized at a voltage at which the characteristics of the OLED are not degradation by the AC driving method.

Microstructure and Mechanical Properties of Nanocrystalline TiN Films Through Increasing Substrate Bias (기판 바이어스 인가에 따른 나노결정질 TiN 코팅 막의 미세구조와 기계적 성질변화)

  • Chun, Sung-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.479-484
    • /
    • 2010
  • Microstructural and mechanical properties of the TiN films deposited on Si substrates under various substrate bias voltages by a reactive magnetron sputtering have been studied. It was found that the crystallographic texture, microstructural morphology and mechanical property of the TiN films were strongly depended on the substrate bias voltage. TiN films deposited without bias exhibited a mixed (200)-(111) texture with a strong (200) texture, which subsequently changed to a strong (111) texture with increasing bias voltage. It is also observed that the crystallite size decreases with increasing bias voltage, which corresponds to the increasing diffraction peak width of XRD patterns. The average surface roughness was calculated from AFM images of the films; these results indicated that the average surface roughness was increased with an increase in the bias voltage of the coatings.

Wall Voltage Transfer Characteristics according to Address Bias Voltage

  • Lee, Y.M.;Jeong, D.C.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.601-604
    • /
    • 2007
  • In this paper, we report the wall voltage transfer characteristic between sustain electrodes according to the address bias voltage in a 3-electrodes surface discharge type ac PDP by the VT close curve measurement technique. The result shows the change of wall voltage according to the gap voltage variation depends on the address bias voltage.

  • PDF

Effects of Ramp Type-Common Electrode Bias on Reset Discharge Characteristics in AC-PDP

  • Park, Choon-Sang;Cho, Byung-Gwon;Tae, Heung-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1258-1261
    • /
    • 2005
  • The ramp type bias voltage applied to the common electrode during a reset-period is newly proposed to lower the background luminance and to improve the address discharge characteristics in AC-PDP. The positive ramp bias voltage is applied during the ramp-up period, whereas the negative ramp bias voltage is applied during the ramp-down period. The effects of the voltage slopes in both the positive and negative ramp bias voltages on the background luminance and address voltage characteristics are examined intensively. It is observed that the optimized positive and negative ramp bias voltages applied to the common electrode during the ramp-period can lower the background luminance and also enhance the address discharge characteristics of the AC-PDP.

  • PDF